MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Structured version   Unicode version

Theorem incexc 13628
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Distinct variable group:    A, s

Proof of Theorem incexc
StepHypRef Expression
1 unifi 7821 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  U. A  e.  Fin )
2 hashcl 12408 . . . 4  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  NN0 )
32nn0cnd 10866 . . 3  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  CC )
41, 3syl 16 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  e.  CC )
5 simpl 457 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
6 pwfi 7827 . . . . 5  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
75, 6sylib 196 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  e.  Fin )
8 diffi 7763 . . . 4  |-  ( ~P A  e.  Fin  ->  ( ~P A  \  { (/)
} )  e.  Fin )
97, 8syl 16 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ~P A  \  { (/) } )  e. 
Fin )
10 1cnd 9624 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  1  e.  CC )
1110negcld 9929 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u 1  e.  CC )
12 eldifsni 4159 . . . . . . . 8  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  =/=  (/) )
1312adantl 466 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  =/=  (/) )
14 eldifi 3631 . . . . . . . . . 10  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  e.  ~P A
)
15 elpwi 4025 . . . . . . . . . 10  |-  ( s  e.  ~P A  -> 
s  C_  A )
1614, 15syl 16 . . . . . . . . 9  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  C_  A )
17 ssfi 7752 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  s  C_  A )  -> 
s  e.  Fin )
185, 16, 17syl2an 477 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  e.  Fin )
19 hashnncl 12416 . . . . . . . 8  |-  ( s  e.  Fin  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2018, 19syl 16 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2113, 20mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 s )  e.  NN )
22 nnm1nn0 10849 . . . . . 6  |-  ( (
# `  s )  e.  NN  ->  ( ( # `
 s )  - 
1 )  e.  NN0 )
2321, 22syl 16 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  -  1 )  e. 
NN0 )
2411, 23expcld 12290 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( (
# `  s )  -  1 ) )  e.  CC )
2516adantl 466 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_  A )
26 simplr 754 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  A  C_ 
Fin )
2725, 26sstrd 3519 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_ 
Fin )
28 unifi 7821 . . . . . . . 8  |-  ( ( s  e.  Fin  /\  s  C_  Fin )  ->  U. s  e.  Fin )
2918, 27, 28syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  e.  Fin )
30 intssuni 4310 . . . . . . . 8  |-  ( s  =/=  (/)  ->  |^| s  C_  U. s )
3113, 30syl 16 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. s )
32 ssfi 7752 . . . . . . 7  |-  ( ( U. s  e.  Fin  /\ 
|^| s  C_  U. s
)  ->  |^| s  e. 
Fin )
3329, 31, 32syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  e.  Fin )
34 hashcl 12408 . . . . . 6  |-  ( |^| s  e.  Fin  ->  ( # `
 |^| s )  e. 
NN0 )
3533, 34syl 16 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e. 
NN0 )
3635nn0cnd 10866 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e.  CC )
3724, 36mulcld 9628 . . 3  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
389, 37fsumcl 13534 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
39 disjdif 3905 . . . . 5  |-  ( {
(/) }  i^i  ( ~P A  \  { (/) } ) )  =  (/)
4039a1i 11 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( { (/) }  i^i  ( ~P A  \  { (/)
} ) )  =  (/) )
41 0elpw 4622 . . . . . . . 8  |-  (/)  e.  ~P A
42 snssi 4177 . . . . . . . 8  |-  ( (/)  e.  ~P A  ->  { (/) } 
C_  ~P A )
4341, 42ax-mp 5 . . . . . . 7  |-  { (/) } 
C_  ~P A
44 undif 3913 . . . . . . 7  |-  ( {
(/) }  C_  ~P A  <->  ( { (/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A )
4543, 44mpbi 208 . . . . . 6  |-  ( {
(/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A
4645eqcomi 2480 . . . . 5  |-  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) )
4746a1i 11 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) ) )
48 1cnd 9624 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  1  e.  CC )
4948negcld 9929 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  -u 1  e.  CC )
505, 15, 17syl2an 477 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  s  e.  Fin )
51 hashcl 12408 . . . . . . 7  |-  ( s  e.  Fin  ->  ( # `
 s )  e. 
NN0 )
5250, 51syl 16 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 s )  e. 
NN0 )
5349, 52expcld 12290 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( -u 1 ^ ( # `  s ) )  e.  CC )
541adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  U. A  e.  Fin )
55 inss1 3723 . . . . . . . 8  |-  ( U. A  i^i  |^| s )  C_  U. A
56 ssfi 7752 . . . . . . . 8  |-  ( ( U. A  e.  Fin  /\  ( U. A  i^i  |^| s )  C_  U. A
)  ->  ( U. A  i^i  |^| s )  e. 
Fin )
5754, 55, 56sylancl 662 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( U. A  i^i  |^| s
)  e.  Fin )
58 hashcl 12408 . . . . . . 7  |-  ( ( U. A  i^i  |^| s )  e.  Fin  ->  ( # `  ( U. A  i^i  |^| s
) )  e.  NN0 )
5957, 58syl 16 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  NN0 )
6059nn0cnd 10866 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  CC )
6153, 60mulcld 9628 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  e.  CC )
6240, 47, 7, 61fsumsplit 13541 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ~P  A
( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
63 inidm 3712 . . . . . . 7  |-  ( U. A  i^i  U. A )  =  U. A
6463fveq2i 5875 . . . . . 6  |-  ( # `  ( U. A  i^i  U. A ) )  =  ( # `  U. A )
6564oveq2i 6306 . . . . 5  |-  ( (
# `  U. A )  -  ( # `  ( U. A  i^i  U. A
) ) )  =  ( ( # `  U. A )  -  ( # `
 U. A ) )
664subidd 9930 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 U. A ) )  =  0 )
6765, 66syl5eq 2520 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  0 )
68 incexclem 13627 . . . . 5  |-  ( ( A  e.  Fin  /\  U. A  e.  Fin )  ->  ( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
691, 68syldan 470 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
7067, 69eqtr3d 2510 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
0  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
714, 38negsubd 9948 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) ) )
72 0ex 4583 . . . . . . 7  |-  (/)  e.  _V
73 1cnd 9624 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
1  e.  CC )
7473, 4mulcld 9628 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  e.  CC )
75 fveq2 5872 . . . . . . . . . . . 12  |-  ( s  =  (/)  ->  ( # `  s )  =  (
# `  (/) ) )
76 hash0 12417 . . . . . . . . . . . 12  |-  ( # `  (/) )  =  0
7775, 76syl6eq 2524 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  ( # `  s )  =  0 )
7877oveq2d 6311 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  ( -u 1 ^ 0 ) )
79 neg1cn 10651 . . . . . . . . . . 11  |-  -u 1  e.  CC
80 exp0 12150 . . . . . . . . . . 11  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8179, 80ax-mp 5 . . . . . . . . . 10  |-  ( -u
1 ^ 0 )  =  1
8278, 81syl6eq 2524 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  1 )
83 rint0 4328 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( U. A  i^i  |^| s )  = 
U. A )
8483fveq2d 5876 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( # `  ( U. A  i^i  |^| s ) )  =  ( # `  U. A ) )
8582, 84oveq12d 6313 . . . . . . . 8  |-  ( s  =  (/)  ->  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( 1  x.  ( # `
 U. A ) ) )
8685sumsn 13542 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  (
1  x.  ( # `  U. A ) )  e.  CC )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
8772, 74, 86sylancr 663 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
884mulid2d 9626 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  =  ( # `  U. A ) )
8987, 88eqtr2d 2509 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
909, 37fsumneg 13581 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
-u sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
91 expm1t 12174 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  ( # `  s
)  e.  NN )  ->  ( -u 1 ^ ( # `  s
) )  =  ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  -u 1
) )
9211, 21, 91syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  =  ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  -u 1
) )
9324, 11mulcomd 9629 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  -u 1 )  =  ( -u 1  x.  ( -u 1 ^ ( ( # `  s
)  -  1 ) ) ) )
9424mulm1d 10020 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1  x.  ( -u
1 ^ ( (
# `  s )  -  1 ) ) )  =  -u ( -u 1 ^ ( (
# `  s )  -  1 ) ) )
9592, 93, 943eqtrd 2512 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  = 
-u ( -u 1 ^ ( ( # `  s )  -  1 ) ) )
9625unissd 4275 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  C_ 
U. A )
9731, 96sstrd 3519 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. A )
98 dfss1 3708 . . . . . . . . . . 11  |-  ( |^| s  C_  U. A  <->  ( U. A  i^i  |^| s )  = 
|^| s )
9997, 98sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( U. A  i^i  |^| s
)  =  |^| s
)
10099fveq2d 5876 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 ( U. A  i^i  |^| s ) )  =  ( # `  |^| s ) )
10195, 100oveq12d 6313 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( -u ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
10224, 36mulneg1d 10021 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) )  =  -u ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
103101, 102eqtr2d 2509 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  =  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) ) )
104103sumeq2dv 13504 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
10590, 104eqtr3d 2510 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  -u
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
10689, 105oveq12d 6313 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
10771, 106eqtr3d 2510 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
10862, 70, 1073eqtr4rd 2519 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  0 )
1094, 38, 108subeq0d 9950 1  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118    \ cdif 3478    u. cun 3479    i^i cin 3480    C_ wss 3481   (/)c0 3790   ~Pcpw 4016   {csn 4033   U.cuni 4251   |^|cint 4288   ` cfv 5594  (class class class)co 6295   Fincfn 7528   CCcc 9502   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    - cmin 9817   -ucneg 9818   NNcn 10548   NN0cn0 10807   ^cexp 12146   #chash 12385   sum_csu 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-sum 13488
This theorem is referenced by:  incexc2  13629
  Copyright terms: Public domain W3C validator