MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Unicode version

Theorem inaprc 8667
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc  |-  Inacc  e/  _V

Proof of Theorem inaprc
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 8521 . . . . . 6  |-  ( x  e.  Inacc  ->  x  e.  Inacc W )
2 winaon 8519 . . . . . 6  |-  ( x  e.  Inacc W  ->  x  e.  On )
31, 2syl 16 . . . . 5  |-  ( x  e.  Inacc  ->  x  e.  On )
43ssriv 3312 . . . 4  |-  Inacc  C_  On
5 ssorduni 4725 . . . 4  |-  ( Inacc  C_  On  ->  Ord  U. Inacc )
6 ordsson 4729 . . . 4  |-  ( Ord  U. Inacc  ->  U. Inacc  C_  On )
74, 5, 6mp2b 10 . . 3  |-  U. Inacc  C_  On
8 vex 2919 . . . . . . . 8  |-  y  e. 
_V
9 grothtsk 8666 . . . . . . . 8  |-  U. Tarski  =  _V
108, 9eleqtrri 2477 . . . . . . 7  |-  y  e. 
U. Tarski
11 eluni2 3979 . . . . . . 7  |-  ( y  e.  U. Tarski  <->  E. w  e.  Tarski  y  e.  w
)
1210, 11mpbi 200 . . . . . 6  |-  E. w  e.  Tarski  y  e.  w
13 ne0i 3594 . . . . . . . . . 10  |-  ( y  e.  w  ->  w  =/=  (/) )
14 tskcard 8612 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  w  =/=  (/) )  ->  ( card `  w )  e. 
Inacc )
1513, 14sylan2 461 . . . . . . . . 9  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  ( card `  w )  e. 
Inacc )
1615adantl 453 . . . . . . . 8  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
( card `  w )  e.  Inacc )
17 tsksdom 8587 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  y  ~<  w )
1817adantl 453 . . . . . . . . 9  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
y  ~<  w )
19 tskwe2 8604 . . . . . . . . . . 11  |-  ( w  e.  Tarski  ->  w  e.  dom  card )
2019adantr 452 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  w  e.  dom  card )
21 cardsdomel 7817 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  w  e.  dom  card )  ->  ( y  ~<  w  <->  y  e.  ( card `  w
) ) )
2220, 21sylan2 461 . . . . . . . . 9  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
( y  ~<  w  <->  y  e.  ( card `  w
) ) )
2318, 22mpbid 202 . . . . . . . 8  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
y  e.  ( card `  w ) )
24 eleq2 2465 . . . . . . . . 9  |-  ( z  =  ( card `  w
)  ->  ( y  e.  z  <->  y  e.  (
card `  w )
) )
2524rspcev 3012 . . . . . . . 8  |-  ( ( ( card `  w
)  e.  Inacc  /\  y  e.  ( card `  w
) )  ->  E. z  e.  Inacc  y  e.  z )
2616, 23, 25syl2anc 643 . . . . . . 7  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  ->  E. z  e.  Inacc  y  e.  z )
2726rexlimdvaa 2791 . . . . . 6  |-  ( y  e.  On  ->  ( E. w  e.  Tarski  y  e.  w  ->  E. z  e.  Inacc  y  e.  z ) )
2812, 27mpi 17 . . . . 5  |-  ( y  e.  On  ->  E. z  e.  Inacc  y  e.  z )
29 eluni2 3979 . . . . 5  |-  ( y  e.  U. Inacc  <->  E. z  e.  Inacc  y  e.  z )
3028, 29sylibr 204 . . . 4  |-  ( y  e.  On  ->  y  e.  U. Inacc )
3130ssriv 3312 . . 3  |-  On  C_  U.
Inacc
327, 31eqssi 3324 . 2  |-  U. Inacc  =  On
33 ssonprc 4731 . . 3  |-  ( Inacc  C_  On  ->  ( Inacc  e/ 
_V 
<-> 
U. Inacc  =  On ) )
344, 33ax-mp 8 . 2  |-  ( Inacc  e/ 
_V 
<-> 
U. Inacc  =  On )
3532, 34mpbir 201 1  |-  Inacc  e/  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567    e/ wnel 2568   E.wrex 2667   _Vcvv 2916    C_ wss 3280   (/)c0 3588   U.cuni 3975   class class class wbr 4172   Ord word 4540   Oncon0 4541   dom cdm 4837   ` cfv 5413    ~< csdm 7067   cardccrd 7778   Inacc Wcwina 8513   Inacccina 8514   Tarskictsk 8579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-ac2 8299  ax-groth 8654
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-smo 6567  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-har 7482  df-r1 7646  df-card 7782  df-aleph 7783  df-cf 7784  df-acn 7785  df-ac 7953  df-wina 8515  df-ina 8516  df-tsk 8580
  Copyright terms: Public domain W3C validator