MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in32 Structured version   Unicode version

Theorem in32 3710
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  B )

Proof of Theorem in32
StepHypRef Expression
1 inass 3708 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
2 in12 3709 . 2  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
3 incom 3691 . 2  |-  ( B  i^i  ( A  i^i  C ) )  =  ( ( A  i^i  C
)  i^i  B )
41, 2, 33eqtri 2500 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    i^i cin 3475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-in 3483
This theorem is referenced by:  in13  3711  inrot  3713  wefrc  4873  imainrect  5446  fpwwe2  9017  incexclem  13604  ressress  14545  kgeni  19770  kgencn3  19791  fclsrest  20257  voliunlem1  21692  sspred  28826
  Copyright terms: Public domain W3C validator