MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Structured version   Unicode version

Theorem imsmetlem 24080
Description: Lemma for imsmet 24081. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1  |-  X  =  ( BaseSet `  U )
imsmetlem.2  |-  G  =  ( +v `  U
)
imsmetlem.7  |-  M  =  ( inv `  G
)
imsmetlem.4  |-  S  =  ( .sOLD `  U )
imsmetlem.5  |-  Z  =  ( 0vec `  U
)
imsmetlem.6  |-  N  =  ( normCV `  U )
imsmetlem.8  |-  D  =  ( IndMet `  U )
imsmetlem.9  |-  U  e.  NrmCVec
Assertion
Ref Expression
imsmetlem  |-  D  e.  ( Met `  X
)

Proof of Theorem imsmetlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3  |-  X  =  ( BaseSet `  U )
2 fvex 5700 . . 3  |-  ( BaseSet `  U )  e.  _V
31, 2eqeltri 2512 . 2  |-  X  e. 
_V
4 imsmetlem.9 . . 3  |-  U  e.  NrmCVec
5 imsmetlem.8 . . . 4  |-  D  =  ( IndMet `  U )
61, 5imsdf 24079 . . 3  |-  ( U  e.  NrmCVec  ->  D : ( X  X.  X ) --> RR )
74, 6ax-mp 5 . 2  |-  D :
( X  X.  X
) --> RR
8 imsmetlem.2 . . . . . 6  |-  G  =  ( +v `  U
)
9 imsmetlem.4 . . . . . 6  |-  S  =  ( .sOLD `  U )
10 imsmetlem.6 . . . . . 6  |-  N  =  ( normCV `  U )
111, 8, 9, 10, 5imsdval2 24077 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  =  ( N `  ( x G (
-u 1 S y ) ) ) )
124, 11mp3an1 1301 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( x G ( -u 1 S y ) ) ) )
1312eqeq1d 2450 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
( N `  (
x G ( -u
1 S y ) ) )  =  0 ) )
14 neg1cn 10424 . . . . . 6  |-  -u 1  e.  CC
151, 9nvscl 24005 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X )
164, 14, 15mp3an12 1304 . . . . 5  |-  ( y  e.  X  ->  ( -u 1 S y )  e.  X )
171, 8nvgcl 23997 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  ( -u 1 S y )  e.  X )  -> 
( x G (
-u 1 S y ) )  e.  X
)
184, 17mp3an1 1301 . . . . 5  |-  ( ( x  e.  X  /\  ( -u 1 S y )  e.  X )  ->  ( x G ( -u 1 S y ) )  e.  X )
1916, 18sylan2 474 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G (
-u 1 S y ) )  e.  X
)
20 imsmetlem.5 . . . . 5  |-  Z  =  ( 0vec `  U
)
211, 20, 10nvz 24056 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x G ( -u
1 S y ) )  e.  X )  ->  ( ( N `
 ( x G ( -u 1 S y ) ) )  =  0  <->  ( x G ( -u 1 S y ) )  =  Z ) )
224, 19, 21sylancr 663 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( N `  ( x G (
-u 1 S y ) ) )  =  0  <->  ( x G ( -u 1 S y ) )  =  Z ) )
231, 20nvzcl 24013 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
244, 23ax-mp 5 . . . . . 6  |-  Z  e.  X
251, 8nvrcan 24002 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( x G (
-u 1 S y ) )  e.  X  /\  Z  e.  X  /\  y  e.  X
) )  ->  (
( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <-> 
( x G (
-u 1 S y ) )  =  Z ) )
264, 25mpan 670 . . . . . 6  |-  ( ( ( x G (
-u 1 S y ) )  e.  X  /\  Z  e.  X  /\  y  e.  X
)  ->  ( (
( x G (
-u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
2724, 26mp3an2 1302 . . . . 5  |-  ( ( ( x G (
-u 1 S y ) )  e.  X  /\  y  e.  X
)  ->  ( (
( x G (
-u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
2819, 27sylancom 667 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
29 simpl 457 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  x  e.  X )
3016adantl 466 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X
)
31 simpr 461 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  y  e.  X )
321, 8nvass 23999 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  X  /\  ( -u 1 S y )  e.  X  /\  y  e.  X )
)  ->  ( (
x G ( -u
1 S y ) ) G y )  =  ( x G ( ( -u 1 S y ) G y ) ) )
334, 32mpan 670 . . . . . . 7  |-  ( ( x  e.  X  /\  ( -u 1 S y )  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  ( x G ( (
-u 1 S y ) G y ) ) )
3429, 30, 31, 33syl3anc 1218 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  ( x G ( (
-u 1 S y ) G y ) ) )
351, 8, 9, 20nvlinv 24033 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  (
( -u 1 S y ) G y )  =  Z )
364, 35mpan 670 . . . . . . . 8  |-  ( y  e.  X  ->  (
( -u 1 S y ) G y )  =  Z )
3736adantl 466 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( -u 1 S y ) G y )  =  Z )
3837oveq2d 6106 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G ( ( -u 1 S y ) G y ) )  =  ( x G Z ) )
391, 8, 20nv0rid 24014 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  (
x G Z )  =  x )
404, 39mpan 670 . . . . . . 7  |-  ( x  e.  X  ->  (
x G Z )  =  x )
4140adantr 465 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G Z )  =  x )
4234, 38, 413eqtrd 2478 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  x )
431, 8, 20nv0lid 24015 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( Z G y )  =  y )
444, 43mpan 670 . . . . . 6  |-  ( y  e.  X  ->  ( Z G y )  =  y )
4544adantl 466 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( Z G y )  =  y )
4642, 45eqeq12d 2456 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <->  x  =  y
) )
4728, 46bitr3d 255 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) )  =  Z  <->  x  =  y
) )
4813, 22, 473bitrd 279 . 2  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
49 simpr 461 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  x  e.  X )
501, 9nvscl 24005 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  z  e.  X )  ->  ( -u 1 S z )  e.  X )
514, 14, 50mp3an12 1304 . . . . . . . 8  |-  ( z  e.  X  ->  ( -u 1 S z )  e.  X )
5251adantr 465 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( -u 1 S z )  e.  X
)
531, 8nvgcl 23997 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  ( -u 1 S z )  e.  X )  -> 
( x G (
-u 1 S z ) )  e.  X
)
544, 53mp3an1 1301 . . . . . . 7  |-  ( ( x  e.  X  /\  ( -u 1 S z )  e.  X )  ->  ( x G ( -u 1 S z ) )  e.  X )
5549, 52, 54syl2anc 661 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G (
-u 1 S z ) )  e.  X
)
56553adant3 1008 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x G (
-u 1 S z ) )  e.  X
)
571, 8nvgcl 23997 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  ( -u 1 S y )  e.  X )  -> 
( z G (
-u 1 S y ) )  e.  X
)
584, 57mp3an1 1301 . . . . . . 7  |-  ( ( z  e.  X  /\  ( -u 1 S y )  e.  X )  ->  ( z G ( -u 1 S y ) )  e.  X )
5916, 58sylan2 474 . . . . . 6  |-  ( ( z  e.  X  /\  y  e.  X )  ->  ( z G (
-u 1 S y ) )  e.  X
)
60593adant2 1007 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z G (
-u 1 S y ) )  e.  X
)
611, 8, 10nvtri 24057 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
x G ( -u
1 S z ) )  e.  X  /\  ( z G (
-u 1 S y ) )  e.  X
)  ->  ( N `  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )  <_  ( ( N `
 ( x G ( -u 1 S z ) ) )  +  ( N `  ( z G (
-u 1 S y ) ) ) ) )
624, 61mp3an1 1301 . . . . 5  |-  ( ( ( x G (
-u 1 S z ) )  e.  X  /\  ( z G (
-u 1 S y ) )  e.  X
)  ->  ( N `  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )  <_  ( ( N `
 ( x G ( -u 1 S z ) ) )  +  ( N `  ( z G (
-u 1 S y ) ) ) ) )
6356, 60, 62syl2anc 661 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( N `  (
( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )  <_ 
( ( N `  ( x G (
-u 1 S z ) ) )  +  ( N `  (
z G ( -u
1 S y ) ) ) ) )
64123adant1 1006 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( x G ( -u 1 S y ) ) ) )
65 simp1 988 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  z  e.  X )
66163ad2ant3 1011 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X
)
671, 8nvass 23999 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  (
( x G (
-u 1 S z ) )  e.  X  /\  z  e.  X  /\  ( -u 1 S y )  e.  X
) )  ->  (
( ( x G ( -u 1 S z ) ) G z ) G (
-u 1 S y ) )  =  ( ( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )
684, 67mpan 670 . . . . . . . 8  |-  ( ( ( x G (
-u 1 S z ) )  e.  X  /\  z  e.  X  /\  ( -u 1 S y )  e.  X
)  ->  ( (
( x G (
-u 1 S z ) ) G z ) G ( -u
1 S y ) )  =  ( ( x G ( -u
1 S z ) ) G ( z G ( -u 1 S y ) ) ) )
6956, 65, 66, 68syl3anc 1218 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S z ) ) G z ) G ( -u 1 S y ) )  =  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )
70 simpl 457 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  x  e.  X )  ->  z  e.  X )
711, 8nvass 23999 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  X  /\  ( -u 1 S z )  e.  X  /\  z  e.  X )
)  ->  ( (
x G ( -u
1 S z ) ) G z )  =  ( x G ( ( -u 1 S z ) G z ) ) )
724, 71mpan 670 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( -u 1 S z )  e.  X  /\  z  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  ( x G ( (
-u 1 S z ) G z ) ) )
7349, 52, 70, 72syl3anc 1218 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  ( x G ( (
-u 1 S z ) G z ) ) )
741, 8, 9, 20nvlinv 24033 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( -u 1 S z ) G z )  =  Z )
754, 74mpan 670 . . . . . . . . . . . 12  |-  ( z  e.  X  ->  (
( -u 1 S z ) G z )  =  Z )
7675adantr 465 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( -u 1 S z ) G z )  =  Z )
7776oveq2d 6106 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G ( ( -u 1 S z ) G z ) )  =  ( x G Z ) )
7840adantl 466 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G Z )  =  x )
7973, 77, 783eqtrd 2478 . . . . . . . . 9  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  x )
80793adant3 1008 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  x )
8180oveq1d 6105 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S z ) ) G z ) G ( -u 1 S y ) )  =  ( x G (
-u 1 S y ) ) )
8269, 81eqtr3d 2476 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) )  =  ( x G (
-u 1 S y ) ) )
8382fveq2d 5694 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( N `  (
( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )  =  ( N `  (
x G ( -u
1 S y ) ) ) )
8464, 83eqtr4d 2477 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( ( x G ( -u 1 S z ) ) G ( z G ( -u 1 S y ) ) ) ) )
851, 8, 9, 10, 5imsdval2 24077 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  x  e.  X )  ->  (
z D x )  =  ( N `  ( z G (
-u 1 S x ) ) ) )
864, 85mp3an1 1301 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( z D x )  =  ( N `
 ( z G ( -u 1 S x ) ) ) )
871, 8, 9, 10nvdif 24052 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  x  e.  X )  ->  ( N `  ( z G ( -u 1 S x ) ) )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
884, 87mp3an1 1301 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( N `  (
z G ( -u
1 S x ) ) )  =  ( N `  ( x G ( -u 1 S z ) ) ) )
8986, 88eqtrd 2474 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( z D x )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
90893adant3 1008 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z D x )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
911, 8, 9, 10, 5imsdval2 24077 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  y  e.  X )  ->  (
z D y )  =  ( N `  ( z G (
-u 1 S y ) ) ) )
924, 91mp3an1 1301 . . . . . 6  |-  ( ( z  e.  X  /\  y  e.  X )  ->  ( z D y )  =  ( N `
 ( z G ( -u 1 S y ) ) ) )
93923adant2 1007 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z D y )  =  ( N `
 ( z G ( -u 1 S y ) ) ) )
9490, 93oveq12d 6108 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( z D x )  +  ( z D y ) )  =  ( ( N `  ( x G ( -u 1 S z ) ) )  +  ( N `
 ( z G ( -u 1 S y ) ) ) ) )
9563, 84, 943brtr4d 4321 . . 3  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
96953coml 1194 . 2  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
973, 7, 48, 96ismeti 19899 1  |-  D  e.  ( Met `  X
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2971   class class class wbr 4291    X. cxp 4837   -->wf 5413   ` cfv 5417  (class class class)co 6090   CCcc 9279   RRcr 9280   0cc0 9281   1c1 9282    + caddc 9284    <_ cle 9418   -ucneg 9595   Metcme 17801   invcgn 23674   NrmCVeccnv 23961   +vcpv 23962   BaseSetcba 23963   .sOLDcns 23964   0veccn0v 23965   normCVcnmcv 23967   IndMetcims 23968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-seq 11806  df-exp 11865  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-met 17810  df-grpo 23677  df-gid 23678  df-ginv 23679  df-gdiv 23680  df-ablo 23768  df-vc 23923  df-nv 23969  df-va 23972  df-ba 23973  df-sm 23974  df-0v 23975  df-vs 23976  df-nmcv 23977  df-ims 23978
This theorem is referenced by:  imsmet  24081
  Copyright terms: Public domain W3C validator