MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impt Structured version   Visualization version   Unicode version

Theorem impt 161
Description: Importation theorem expressed with primitive connectives. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2013.)
Assertion
Ref Expression
impt  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( -.  ( ph  ->  -.  ps )  ->  ch )
)

Proof of Theorem impt
StepHypRef Expression
1 simprim 154 . 2  |-  ( -.  ( ph  ->  -.  ps )  ->  ps )
2 simplim 155 . . 3  |-  ( -.  ( ph  ->  -.  ps )  ->  ph )
32imim1i 60 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( -.  ( ph  ->  -.  ps )  ->  ( ps 
->  ch ) ) )
41, 3mpdi 43 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( -.  ( ph  ->  -.  ps )  ->  ch )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator