![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impbii | Structured version Visualization version Unicode version |
Description: Infer an equivalence from an implication and its converse. Inference associated with impbi 191. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
impbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
impbii.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbii.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | impbi 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |