MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impac Structured version   Unicode version

Theorem impac 621
Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
impac.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
impac  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ps ) )

Proof of Theorem impac
StepHypRef Expression
1 impac.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21ancrd 554 . 2  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )
32imp 429 1  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  imdistanri  691  f1elima  6080  zfrep6  6650  repswswrd  12535  sltval2  27936  clwwlknprop  30578  bj-snsetex  32769
  Copyright terms: Public domain W3C validator