MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imori Structured version   Unicode version

Theorem imori 413
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.)
Hypothesis
Ref Expression
imori.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
imori  |-  ( -. 
ph  \/  ps )

Proof of Theorem imori
StepHypRef Expression
1 imori.1 . 2  |-  ( ph  ->  ps )
2 imor 412 . 2  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
31, 2mpbi 208 1  |-  ( -. 
ph  \/  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  pm2.1  417  pm2.26  878  rb-ax1  1560  meran1  28394  meran2  28395  meran3  28396  numclwwlk3lem  30842
  Copyright terms: Public domain W3C validator