MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imf Structured version   Unicode version

Theorem imf 12909
Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imf  |-  Im : CC
--> RR

Proof of Theorem imf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-im 12897 . 2  |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
2 imval 12903 . . 3  |-  ( x  e.  CC  ->  (
Im `  x )  =  ( Re `  ( x  /  _i ) ) )
3 imcl 12907 . . 3  |-  ( x  e.  CC  ->  (
Im `  x )  e.  RR )
42, 3eqeltrrd 2556 . 2  |-  ( x  e.  CC  ->  (
Re `  ( x  /  _i ) )  e.  RR )
51, 4fmpti 6044 1  |-  Im : CC
--> RR
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   _ici 9494    / cdiv 10206   Recre 12893   Imcim 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-2 10594  df-cj 12895  df-re 12896  df-im 12897
This theorem is referenced by:  imcn2  13387  climim  13392  rlimim  13397  caucvgr  13461  fsumim  13586  imcncf  21170  cnrehmeo  21216  ismbf  21800  ismbfcn  21801  mbfconst  21805  ismbfcn2  21809  mbfres  21814  mbfimaopnlem  21825  eff1olem  22696  ellogrn  22703  dvloglem  22785  logf1o2  22787  dvlog  22788  efopnlem2  22794  asinneg  22973  mbfresfi  29666  itgaddnc  29680  itgmulc2nc  29688  mbfres2cn  31304
  Copyright terms: Public domain W3C validator