MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanri Structured version   Unicode version

Theorem imdistanri 691
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
Hypothesis
Ref Expression
imdistanri.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistanri  |-  ( ( ps  /\  ph )  ->  ( ch  /\  ph ) )

Proof of Theorem imdistanri
StepHypRef Expression
1 imdistanri.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21com12 31 . 2  |-  ( ps 
->  ( ph  ->  ch ) )
32impac 621 1  |-  ( ( ps  /\  ph )  ->  ( ch  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  tc2  8065  cnextcn  19757  usgrarnedg  23440  tpr2rico  26478  seqpo  28783  isdrngo2  28904  pm10.55  29761  monmat2matmon  31280  2pm13.193VD  31941  bj-snsetex  32758
  Copyright terms: Public domain W3C validator