MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistand Structured version   Unicode version

Theorem imdistand 696
Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imdistand  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
2 imdistan 693 . 2  |-  ( ( ps  ->  ( ch  ->  th ) )  <->  ( ( ps  /\  ch )  -> 
( ps  /\  th ) ) )
31, 2sylib 199 1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  imdistanda  697  a2and  818  predpo  5417  fconstfvOLD  6142  unblem1  7829  cfub  8677  lbzbi  11252  poimirlem32  31675  ispridl2  31974  ispridlc  32006  lnr2i  35680  usgra2pthspth  38420
  Copyright terms: Public domain W3C validator