MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi12 Structured version   Unicode version

Theorem imbi12 324
Description: Closed form of imbi12i 328. Was automatically derived from its "Virtual Deduction" version and Metamath's "minimize" command. (Contributed by Alan Sare, 18-Mar-2012.)
Assertion
Ref Expression
imbi12  |-  ( (
ph 
<->  ps )  ->  (
( ch  <->  th )  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) ) )

Proof of Theorem imbi12
StepHypRef Expression
1 simplim 155 . . 3  |-  ( -.  ( ( ph  <->  ps )  ->  -.  ( ch  <->  th )
)  ->  ( ph  <->  ps ) )
2 simprim 154 . . 3  |-  ( -.  ( ( ph  <->  ps )  ->  -.  ( ch  <->  th )
)  ->  ( ch  <->  th ) )
31, 2imbi12d 322 . 2  |-  ( -.  ( ( ph  <->  ps )  ->  -.  ( ch  <->  th )
)  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) )
43expi 153 1  |-  ( (
ph 
<->  ps )  ->  (
( ch  <->  th )  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189
This theorem is referenced by:  imbi12i  328  bj-imbi12  31175  ifpbi12  36108  ifpbi13  36109  imbi13  36853  imbi13VD  37250  sbcssgVD  37259
  Copyright terms: Public domain W3C validator