MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imauni Structured version   Unicode version

Theorem imauni 6139
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni  |-  ( A
" U. B )  =  U_ x  e.  B  ( A "
x )
Distinct variable groups:    x, A    x, B

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 4373 . . 3  |-  U. B  =  U_ x  e.  B  x
21imaeq2i 5328 . 2  |-  ( A
" U. B )  =  ( A " U_ x  e.  B  x )
3 imaiun 6138 . 2  |-  ( A
" U_ x  e.  B  x )  =  U_ x  e.  B  ( A " x )
42, 3eqtri 2491 1  |-  ( A
" U. B )  =  U_ x  e.  B  ( A "
x )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374   U.cuni 4240   U_ciun 4320   "cima 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-xp 5000  df-cnv 5002  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007
This theorem is referenced by:  enfin2i  8692  tgcn  19514  cncmp  19653  qtoptop2  19930  mbfimaopnlem  21792
  Copyright terms: Public domain W3C validator