MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundir Structured version   Unicode version

Theorem imaundir 5405
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir  |-  ( ( A  u.  B )
" C )  =  ( ( A " C )  u.  ( B " C ) )

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 4998 . . 3  |-  ( ( A  u.  B )
" C )  =  ran  ( ( A  u.  B )  |`  C )
2 resundir 5274 . . . 4  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
32rneqi 5215 . . 3  |-  ran  (
( A  u.  B
)  |`  C )  =  ran  ( ( A  |`  C )  u.  ( B  |`  C ) )
4 rnun 5400 . . 3  |-  ran  (
( A  |`  C )  u.  ( B  |`  C ) )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
51, 3, 43eqtri 2474 . 2  |-  ( ( A  u.  B )
" C )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
6 df-ima 4998 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
7 df-ima 4998 . . 3  |-  ( B
" C )  =  ran  ( B  |`  C )
86, 7uneq12i 3638 . 2  |-  ( ( A " C )  u.  ( B " C ) )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
95, 8eqtr4i 2473 1  |-  ( ( A  u.  B )
" C )  =  ( ( A " C )  u.  ( B " C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1381    u. cun 3456   ran crn 4986    |` cres 4987   "cima 4988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-rab 2800  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-br 4434  df-opab 4492  df-cnv 4993  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998
This theorem is referenced by:  fvun  5924  suppun  6918  fsuppun  7846  fpwwe2lem13  9018  gsumzaddlemOLD  16805  funsnfsupOLD  18124  ustuqtop1  20610  mbfres2  21918  imadifxp  27323  eulerpartlemt  28176  bj-projun  34264
  Copyright terms: Public domain W3C validator