MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Unicode version

Theorem imaundi 5243
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5119 . . . 4  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
21rneqi 5055 . . 3  |-  ran  ( A  |`  ( B  u.  C ) )  =  ran  ( ( A  |`  B )  u.  ( A  |`  C ) )
3 rnun 5239 . . 3  |-  ran  (
( A  |`  B )  u.  ( A  |`  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
42, 3eqtri 2424 . 2  |-  ran  ( A  |`  ( B  u.  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
5 df-ima 4850 . 2  |-  ( A
" ( B  u.  C ) )  =  ran  ( A  |`  ( B  u.  C
) )
6 df-ima 4850 . . 3  |-  ( A
" B )  =  ran  ( A  |`  B )
7 df-ima 4850 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
86, 7uneq12i 3459 . 2  |-  ( ( A " B )  u.  ( A " C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
94, 5, 83eqtr4i 2434 1  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    u. cun 3278   ran crn 4838    |` cres 4839   "cima 4840
This theorem is referenced by:  fnimapr  5746  domunfican  7338  fiint  7342  fodomfi  7344  marypha1lem  7396  dprd2da  15555  dmdprdsplit2lem  15558  uniioombllem3  19430  mbfimaicc  19478  plyeq0  20083  eupath2lem3  21654  mbfposadd  26153  itg2addnclem2  26156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850
  Copyright terms: Public domain W3C validator