MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Unicode version

Theorem imasvscafn 14496
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasvscaf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasvscaf.f  |-  ( ph  ->  F : V -onto-> B
)
imasvscaf.r  |-  ( ph  ->  R  e.  Z )
imasvscaf.g  |-  G  =  (Scalar `  R )
imasvscaf.k  |-  K  =  ( Base `  G
)
imasvscaf.q  |-  .x.  =  ( .s `  R )
imasvscaf.s  |-  .xb  =  ( .s `  U )
imasvscaf.e  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( ( F `  a )  =  ( F `  q )  ->  ( F `  ( p  .x.  a ) )  =  ( F `
 ( p  .x.  q ) ) ) )
Assertion
Ref Expression
imasvscafn  |-  ( ph  -> 
.xb  Fn  ( K  X.  B ) )
Distinct variable groups:    p, a,
q, F    K, a, p, q    ph, a, p, q    B, p, q    R, p, q    .x. , p, q    .xb , a, p, q    V, a, p, q
Allowed substitution hints:    B( a)    R( a)    .x. ( a)    U( q, p, a)    G( q, p, a)    Z( q, p, a)

Proof of Theorem imasvscafn
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . . . . 8  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  =  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
2 fvex 5722 . . . . . . . 8  |-  ( F `
 ( p  .x.  q ) )  e. 
_V
31, 2fnmpt2i 6664 . . . . . . 7  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )
4 fnrel 5530 . . . . . . 7  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )  ->  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
53, 4ax-mp 5 . . . . . 6  |-  Rel  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )
65rgenw 2804 . . . . 5  |-  A. q  e.  V  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
7 reliun 4981 . . . . 5  |-  ( Rel  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  <->  A. q  e.  V  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
86, 7mpbir 209 . . . 4  |-  Rel  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
9 imasvscaf.u . . . . . 6  |-  ( ph  ->  U  =  ( F 
"s  R ) )
10 imasvscaf.v . . . . . 6  |-  ( ph  ->  V  =  ( Base `  R ) )
11 imasvscaf.f . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
12 imasvscaf.r . . . . . 6  |-  ( ph  ->  R  e.  Z )
13 imasvscaf.g . . . . . 6  |-  G  =  (Scalar `  R )
14 imasvscaf.k . . . . . 6  |-  K  =  ( Base `  G
)
15 imasvscaf.q . . . . . 6  |-  .x.  =  ( .s `  R )
16 imasvscaf.s . . . . . 6  |-  .xb  =  ( .s `  U )
179, 10, 11, 12, 13, 14, 15, 16imasvsca 14479 . . . . 5  |-  ( ph  -> 
.xb  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
1817releqd 4945 . . . 4  |-  ( ph  ->  ( Rel  .xb  <->  Rel  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) ) )
198, 18mpbiri 233 . . 3  |-  ( ph  ->  Rel  .xb  )
20 dffn2 5581 . . . . . . . . . . . . 13  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )  <->  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) : ( K  X.  { ( F `
 q ) } ) --> _V )
213, 20mpbi 208 . . . . . . . . . . . 12  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) : ( K  X.  { ( F `
 q ) } ) --> _V
22 fssxp 5591 . . . . . . . . . . . 12  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) : ( K  X.  { ( F `  q ) } ) --> _V  ->  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  {
( F `  q
) } )  X. 
_V ) )
2321, 22ax-mp 5 . . . . . . . . . . 11  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  ( ( K  X.  { ( F `
 q ) } )  X.  _V )
24 fof 5641 . . . . . . . . . . . . . . 15  |-  ( F : V -onto-> B  ->  F : V --> B )
2511, 24syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : V --> B )
2625ffvelrnda 5864 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  V )  ->  ( F `  q )  e.  B )
2726snssd 4039 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  V )  ->  { ( F `  q ) }  C_  B )
28 xpss2 4970 . . . . . . . . . . . 12  |-  ( { ( F `  q
) }  C_  B  ->  ( K  X.  {
( F `  q
) } )  C_  ( K  X.  B
) )
29 xpss1 4969 . . . . . . . . . . . 12  |-  ( ( K  X.  { ( F `  q ) } )  C_  ( K  X.  B )  -> 
( ( K  X.  { ( F `  q ) } )  X.  _V )  C_  ( ( K  X.  B )  X.  _V ) )
3027, 28, 293syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  V )  ->  (
( K  X.  {
( F `  q
) } )  X. 
_V )  C_  (
( K  X.  B
)  X.  _V )
)
3123, 30syl5ss 3388 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  V )  ->  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3231ralrimiva 2820 . . . . . . . . 9  |-  ( ph  ->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
33 iunss 4232 . . . . . . . . 9  |-  ( U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )  <->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3432, 33sylibr 212 . . . . . . . 8  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3517, 34eqsstrd 3411 . . . . . . 7  |-  ( ph  -> 
.xb  C_  ( ( K  X.  B )  X. 
_V ) )
36 dmss 5060 . . . . . . 7  |-  (  .xb  C_  ( ( K  X.  B )  X.  _V )  ->  dom  .xb  C_  dom  ( ( K  X.  B )  X.  _V ) )
3735, 36syl 16 . . . . . 6  |-  ( ph  ->  dom  .xb  C_  dom  (
( K  X.  B
)  X.  _V )
)
38 vn0 3665 . . . . . . 7  |-  _V  =/=  (/)
39 dmxp 5079 . . . . . . 7  |-  ( _V  =/=  (/)  ->  dom  ( ( K  X.  B )  X.  _V )  =  ( K  X.  B
) )
4038, 39ax-mp 5 . . . . . 6  |-  dom  (
( K  X.  B
)  X.  _V )  =  ( K  X.  B )
4137, 40syl6sseq 3423 . . . . 5  |-  ( ph  ->  dom  .xb  C_  ( K  X.  B ) )
42 forn 5644 . . . . . . 7  |-  ( F : V -onto-> B  ->  ran  F  =  B )
4311, 42syl 16 . . . . . 6  |-  ( ph  ->  ran  F  =  B )
4443xpeq2d 4885 . . . . 5  |-  ( ph  ->  ( K  X.  ran  F )  =  ( K  X.  B ) )
4541, 44sseqtr4d 3414 . . . 4  |-  ( ph  ->  dom  .xb  C_  ( K  X.  ran  F ) )
46 df-br 4314 . . . . . . . . . 10  |-  ( <.
p ,  ( F `
 a ) >.  .xb  w  <->  <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb  )
4717eleq2d 2510 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb 
<-> 
<. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ) )
4847adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb 
<-> 
<. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ) )
49 eliun 4196 . . . . . . . . . . . 12  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  <->  E. q  e.  V  <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
50 df-3an 967 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  K  /\  a  e.  V  /\  q  e.  V )  <->  ( ( p  e.  K  /\  a  e.  V
)  /\  q  e.  V ) )
511mpt2fun 6213 . . . . . . . . . . . . . . . . . . . 20  |-  Fun  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )
52 funopfv 5752 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  w ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  w )
54 df-ov 6115 . . . . . . . . . . . . . . . . . . . 20  |-  ( p ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ( F `
 a ) )  =  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) `  <. p ,  ( F `  a ) >. )
55 opex 4577 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  <. p ,  ( F `  a ) >.  e.  _V
56 vex 2996 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  w  e. 
_V
5755, 56opeldm 5064 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  <. p ,  ( F `  a ) >.  e.  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
581, 2dmmpt2 6665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  dom  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  =  ( K  X.  { ( F `  q ) } )
5957, 58syl6eleq 2533 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  <. p ,  ( F `  a ) >.  e.  ( K  X.  { ( F `  q ) } ) )
60 opelxp 4890 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
p ,  ( F `
 a ) >.  e.  ( K  X.  {
( F `  q
) } )  <->  ( p  e.  K  /\  ( F `  a )  e.  { ( F `  q ) } ) )
6159, 60sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
p  e.  K  /\  ( F `  a )  e.  { ( F `
 q ) } ) )
62 oveq1 6119 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  p  ->  (
z  .x.  q )  =  ( p  .x.  q ) )
6362fveq2d 5716 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  p  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
64 eqidd 2444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( F `  a )  ->  ( F `  ( p  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
6563equcoms 1733 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  =  z  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
6665eqcomd 2448 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  z  ->  ( F `  ( p  .x.  q ) )  =  ( F `  (
z  .x.  q )
) )
67 eqidd 2444 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
z  .x.  q )
) )
6866, 67cbvmpt2v 6187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  =  ( z  e.  K ,  y  e.  { ( F `
 q ) } 
|->  ( F `  (
z  .x.  q )
) )
6963, 64, 68, 2ovmpt2 6247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  K  /\  ( F `  a )  e.  { ( F `
 q ) } )  ->  ( p
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ( F `
 a ) )  =  ( F `  ( p  .x.  q ) ) )
7061, 69syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
p ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) ( F `  a ) )  =  ( F `  (
p  .x.  q )
) )
7154, 70syl5eqr 2489 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  ( F `  ( p  .x.  q ) ) )
7253, 71eqtr3d 2477 . . . . . . . . . . . . . . . . . 18  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  q ) ) )
7372adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  w  =  ( F `  ( p  .x.  q ) ) )
7461simprd 463 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( F `  a )  e.  { ( F `  q ) } )
75 elsni 3923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  a )  e.  { ( F `
 q ) }  ->  ( F `  a )  =  ( F `  q ) )
7674, 75syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( F `  a )  =  ( F `  q ) )
77 imasvscaf.e . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( ( F `  a )  =  ( F `  q )  ->  ( F `  ( p  .x.  a ) )  =  ( F `
 ( p  .x.  q ) ) ) )
7877imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  ( F `  a )  =  ( F `  q ) )  ->  ( F `  ( p  .x.  a
) )  =  ( F `  ( p 
.x.  q ) ) )
7976, 78sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  ( F `  ( p  .x.  a ) )  =  ( F `  (
p  .x.  q )
) )
8073, 79eqtr4d 2478 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) )
8180ex 434 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8250, 81sylan2br 476 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
p  e.  K  /\  a  e.  V )  /\  q  e.  V
) )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8382anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V )
)  /\  q  e.  V )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8483rexlimdva 2862 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( E. q  e.  V  <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8549, 84syl5bi 217 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8648, 85sylbid 215 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb  ->  w  =  ( F `  ( p 
.x.  a ) ) ) )
8746, 86syl5bi 217 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. p ,  ( F `  a )
>.  .xb  w  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8887alrimiv 1685 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  ->  A. w ( <. p ,  ( F `  a ) >.  .xb  w  ->  w  =  ( F `
 ( p  .x.  a ) ) ) )
89 mo2icl 3159 . . . . . . . 8  |-  ( A. w ( <. p ,  ( F `  a ) >.  .xb  w  ->  w  =  ( F `
 ( p  .x.  a ) ) )  ->  E* w <. p ,  ( F `  a ) >.  .xb  w
)
9088, 89syl 16 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  ->  E* w <. p ,  ( F `  a )
>.  .xb  w )
9190ralrimivva 2829 . . . . . 6  |-  ( ph  ->  A. p  e.  K  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w )
92 fofn 5643 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F  Fn  V )
93 opeq2 4081 . . . . . . . . . . 11  |-  ( y  =  ( F `  a )  ->  <. p ,  y >.  =  <. p ,  ( F `  a ) >. )
9493breq1d 4323 . . . . . . . . . 10  |-  ( y  =  ( F `  a )  ->  ( <. p ,  y >.  .xb  w  <->  <. p ,  ( F `  a )
>.  .xb  w ) )
9594mobidv 2277 . . . . . . . . 9  |-  ( y  =  ( F `  a )  ->  ( E* w <. p ,  y
>.  .xb  w  <->  E* w <. p ,  ( F `
 a ) >.  .xb  w ) )
9695ralrn 5867 . . . . . . . 8  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F E* w <. p ,  y >.  .xb  w  <->  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9711, 92, 963syl 20 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F E* w <. p ,  y >.  .xb  w  <->  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9897ralbidv 2756 . . . . . 6  |-  ( ph  ->  ( A. p  e.  K  A. y  e. 
ran  F E* w <. p ,  y >.  .xb  w  <->  A. p  e.  K  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9991, 98mpbird 232 . . . . 5  |-  ( ph  ->  A. p  e.  K  A. y  e.  ran  F E* w <. p ,  y >.  .xb  w
)
100 breq1 4316 . . . . . . 7  |-  ( x  =  <. p ,  y
>.  ->  ( x  .xb  w 
<-> 
<. p ,  y >.  .xb  w ) )
101100mobidv 2277 . . . . . 6  |-  ( x  =  <. p ,  y
>.  ->  ( E* w  x  .xb  w  <->  E* w <. p ,  y >.  .xb  w ) )
102101ralxp 5002 . . . . 5  |-  ( A. x  e.  ( K  X.  ran  F ) E* w  x  .xb  w  <->  A. p  e.  K  A. y  e.  ran  F E* w <. p ,  y
>.  .xb  w )
10399, 102sylibr 212 . . . 4  |-  ( ph  ->  A. x  e.  ( K  X.  ran  F
) E* w  x 
.xb  w )
104 ssralv 3437 . . . 4  |-  ( dom  .xb  C_  ( K  X.  ran  F )  ->  ( A. x  e.  ( K  X.  ran  F ) E* w  x  .xb  w  ->  A. x  e.  dom  .xb 
E* w  x  .xb  w ) )
10545, 103, 104sylc 60 . . 3  |-  ( ph  ->  A. x  e.  dom  .xb 
E* w  x  .xb  w )
106 dffun7 5465 . . 3  |-  ( Fun  .xb 
<->  ( Rel  .xb  /\  A. x  e.  dom  .xb  E* w  x  .xb  w ) )
10719, 105, 106sylanbrc 664 . 2  |-  ( ph  ->  Fun  .xb  )
108 eqimss2 3430 . . . . . . . . . . . . . . 15  |-  (  .xb  =  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  .xb  )
10917, 108syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
110 iunss 4232 . . . . . . . . . . . . . 14  |-  ( U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  <->  A. q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  .xb  )
111109, 110sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
112111r19.21bi 2835 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  V )  ->  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
113112adantrl 715 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  -> 
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
114 dmss 5060 . . . . . . . . . . 11  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  ->  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  dom  .xb  )
115113, 114syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  dom  .xb  )
11658, 115syl5eqssr 3422 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  -> 
( K  X.  {
( F `  q
) } )  C_  dom  .xb  )
117 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  p  e.  K )
118 fvex 5722 . . . . . . . . . . 11  |-  ( F `
 q )  e. 
_V
119118snid 3926 . . . . . . . . . 10  |-  ( F `
 q )  e. 
{ ( F `  q ) }
120 opelxpi 4892 . . . . . . . . . 10  |-  ( ( p  e.  K  /\  ( F `  q )  e.  { ( F `
 q ) } )  ->  <. p ,  ( F `  q
) >.  e.  ( K  X.  { ( F `
 q ) } ) )
121117, 119, 120sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  <. p ,  ( F `
 q ) >.  e.  ( K  X.  {
( F `  q
) } ) )
122116, 121sseldd 3378 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  <. p ,  ( F `
 q ) >.  e.  dom  .xb  )
123122ralrimivva 2829 . . . . . . 7  |-  ( ph  ->  A. p  e.  K  A. q  e.  V  <. p ,  ( F `
 q ) >.  e.  dom  .xb  )
124 opeq2 4081 . . . . . . . . . . 11  |-  ( y  =  ( F `  q )  ->  <. p ,  y >.  =  <. p ,  ( F `  q ) >. )
125124eleq1d 2509 . . . . . . . . . 10  |-  ( y  =  ( F `  q )  ->  ( <. p ,  y >.  e.  dom  .xb  <->  <. p ,  ( F `  q )
>.  e.  dom  .xb  )
)
126125ralrn 5867 . . . . . . . . 9  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F
<. p ,  y >.  e.  dom  .xb  <->  A. q  e.  V  <. p ,  ( F `
 q ) >.  e.  dom  .xb  ) )
12711, 92, 1263syl 20 . . . . . . . 8  |-  ( ph  ->  ( A. y  e. 
ran  F <. p ,  y >.  e.  dom  .xb  <->  A. q  e.  V  <. p ,  ( F `  q ) >.  e.  dom  .xb  ) )
128127ralbidv 2756 . . . . . . 7  |-  ( ph  ->  ( A. p  e.  K  A. y  e. 
ran  F <. p ,  y >.  e.  dom  .xb  <->  A. p  e.  K  A. q  e.  V  <. p ,  ( F `  q ) >.  e.  dom  .xb  ) )
129123, 128mpbird 232 . . . . . 6  |-  ( ph  ->  A. p  e.  K  A. y  e.  ran  F
<. p ,  y >.  e.  dom  .xb  )
130 eleq1 2503 . . . . . . 7  |-  ( x  =  <. p ,  y
>.  ->  ( x  e. 
dom  .xb  <->  <. p ,  y
>.  e.  dom  .xb  )
)
131130ralxp 5002 . . . . . 6  |-  ( A. x  e.  ( K  X.  ran  F ) x  e.  dom  .xb  <->  A. p  e.  K  A. y  e.  ran  F <. p ,  y >.  e.  dom  .xb  )
132129, 131sylibr 212 . . . . 5  |-  ( ph  ->  A. x  e.  ( K  X.  ran  F
) x  e.  dom  .xb  )
133 dfss3 3367 . . . . 5  |-  ( ( K  X.  ran  F
)  C_  dom  .xb  <->  A. x  e.  ( K  X.  ran  F ) x  e.  dom  .xb  )
134132, 133sylibr 212 . . . 4  |-  ( ph  ->  ( K  X.  ran  F )  C_  dom  .xb  )
13544, 134eqsstr3d 3412 . . 3  |-  ( ph  ->  ( K  X.  B
)  C_  dom  .xb  )
13641, 135eqssd 3394 . 2  |-  ( ph  ->  dom  .xb  =  ( K  X.  B ) )
137 df-fn 5442 . 2  |-  (  .xb  Fn  ( K  X.  B
)  <->  ( Fun  .xb  /\  dom  .xb  =  ( K  X.  B ) ) )
138107, 136, 137sylanbrc 664 1  |-  ( ph  -> 
.xb  Fn  ( K  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756   E*wmo 2254    =/= wne 2620   A.wral 2736   E.wrex 2737   _Vcvv 2993    C_ wss 3349   (/)c0 3658   {csn 3898   <.cop 3904   U_ciun 4192   class class class wbr 4313    X. cxp 4859   dom cdm 4861   ran crn 4862   Rel wrel 4866   Fun wfun 5433    Fn wfn 5434   -->wf 5435   -onto->wfo 5437   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   Basecbs 14195  Scalarcsca 14262   .scvsca 14263    "s cimas 14463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-plusg 14272  df-mulr 14273  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-imas 14467
This theorem is referenced by:  imasvscaval  14497  imasvscaf  14498
  Copyright terms: Public domain W3C validator