MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imassca Structured version   Unicode version

Theorem imassca 14770
Description: The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imassca.g  |-  G  =  (Scalar `  R )
Assertion
Ref Expression
imassca  |-  ( ph  ->  G  =  (Scalar `  U ) )

Proof of Theorem imassca
Dummy variables  g  h  i  n  p  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2467 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2467 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
5 imassca.g . . . 4  |-  G  =  (Scalar `  R )
6 eqid 2467 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2467 . . . 4  |-  ( .s
`  R )  =  ( .s `  R
)
8 eqid 2467 . . . 4  |-  ( .i
`  R )  =  ( .i `  R
)
9 eqid 2467 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
10 eqid 2467 . . . 4  |-  ( dist `  R )  =  (
dist `  R )
11 eqid 2467 . . . 4  |-  ( le
`  R )  =  ( le `  R
)
12 imasbas.f . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
13 imasbas.r . . . . 5  |-  ( ph  ->  R  e.  Z )
14 eqid 2467 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
151, 2, 12, 13, 3, 14imasplusg 14768 . . . 4  |-  ( ph  ->  ( +g  `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
16 eqid 2467 . . . . 5  |-  ( .r
`  U )  =  ( .r `  U
)
171, 2, 12, 13, 4, 16imasmulr 14769 . . . 4  |-  ( ph  ->  ( .r `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } )
18 eqidd 2468 . . . 4  |-  ( ph  ->  U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) )  = 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
19 eqidd 2468 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } )
20 eqidd 2468 . . . 4  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
21 eqid 2467 . . . . 5  |-  ( dist `  U )  =  (
dist `  U )
221, 2, 12, 13, 10, 21imasds 14764 . . . 4  |-  ( ph  ->  ( dist `  U
)  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( (
dist `  R )  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
23 eqidd 2468 . . . 4  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 19, 20, 22, 23, 12, 13imasval 14762 . . 3  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) )
2524fveq2d 5868 . 2  |-  ( ph  ->  (Scalar `  U )  =  (Scalar `  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
26 fvex 5874 . . . 4  |-  (Scalar `  R )  e.  _V
275, 26eqeltri 2551 . . 3  |-  G  e. 
_V
28 eqid 2467 . . . . 5  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
2928imasvalstr 14703 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) Struct  <. 1 , ; 1 2 >.
30 scaid 14612 . . . 4  |- Scalar  = Slot  (Scalar ` 
ndx )
31 snsstp1 4178 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  G >. }  C_  { <. (Scalar ` 
ndx ) ,  G >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  G
) ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. }
32 ssun2 3668 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  G
) ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )
3331, 32sstri 3513 . . . . 5  |-  { <. (Scalar `  ndx ) ,  G >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )
34 ssun1 3667 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3533, 34sstri 3513 . . . 4  |-  { <. (Scalar `  ndx ) ,  G >. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3629, 30, 35strfv 14520 . . 3  |-  ( G  e.  _V  ->  G  =  (Scalar `  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
3727, 36ax-mp 5 . 2  |-  G  =  (Scalar `  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
U_ q  e.  V  ( p  e.  ( Base `  G ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) )
3825, 37syl6reqr 2527 1  |-  ( ph  ->  G  =  (Scalar `  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033   U_ciun 4325   `'ccnv 4998    o. ccom 5003   -onto->wfo 5584   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1c1 9489   2c2 10581  ;cdc 10972   ndxcnx 14483   Basecbs 14486   +g cplusg 14551   .rcmulr 14552  Scalarcsca 14554   .scvsca 14555   .icip 14556  TopSetcts 14557   lecple 14558   distcds 14560   TopOpenctopn 14673   qTop cqtop 14754    "s cimas 14755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-imas 14759
This theorem is referenced by:  divssca  14797  xpssca  14829
  Copyright terms: Public domain W3C validator