MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasnopn Structured version   Unicode version

Theorem imasnopn 20317
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1  |-  X  = 
U. J
Assertion
Ref Expression
imasnopn  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )

Proof of Theorem imasnopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1708 . . . 4  |-  F/ y ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X ) )
2 nfcv 2619 . . . 4  |-  F/_ y
( R " { A } )
3 nfrab1 3038 . . . 4  |-  F/_ y { y  e.  U. K  |  <. A , 
y >.  e.  R }
4 txtop 20196 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
54adantr 465 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( J  tX  K )  e. 
Top )
6 simprl 756 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  e.  ( J  tX  K
) )
7 eqid 2457 . . . . . . . . . . . . 13  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
87eltopss 19543 . . . . . . . . . . . 12  |-  ( ( ( J  tX  K
)  e.  Top  /\  R  e.  ( J  tX  K ) )  ->  R  C_  U. ( J 
tX  K ) )
95, 6, 8syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_ 
U. ( J  tX  K ) )
10 imasnopn.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
11 eqid 2457 . . . . . . . . . . . . 13  |-  U. K  =  U. K
1210, 11txuni 20219 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  U. K )  =  U. ( J  tX  K ) )
1312adantr 465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( X  X.  U. K )  =  U. ( J 
tX  K ) )
149, 13sseqtr4d 3536 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_  ( X  X.  U. K ) )
15 imass1 5381 . . . . . . . . . 10  |-  ( R 
C_  ( X  X.  U. K )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
1614, 15syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
17 xpimasn 5459 . . . . . . . . . 10  |-  ( A  e.  X  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1817ad2antll 728 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1916, 18sseqtrd 3535 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  U. K )
2019sseld 3498 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  ->  y  e.  U. K ) )
2120pm4.71rd 635 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  y  e.  ( R " { A } ) ) ) )
22 vex 3112 . . . . . . . . 9  |-  y  e. 
_V
23 elimasng 5373 . . . . . . . . 9  |-  ( ( A  e.  X  /\  y  e.  _V )  ->  ( y  e.  ( R " { A } )  <->  <. A , 
y >.  e.  R ) )
2422, 23mpan2 671 . . . . . . . 8  |-  ( A  e.  X  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2524ad2antll 728 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2625anbi2d 703 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( y  e.  U. K  /\  y  e.  ( R " { A } ) )  <->  ( y  e.  U. K  /\  <. A ,  y >.  e.  R
) ) )
2721, 26bitrd 253 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  <. A ,  y >.  e.  R
) ) )
28 rabid 3034 . . . . 5  |-  ( y  e.  { y  e. 
U. K  |  <. A ,  y >.  e.  R } 
<->  ( y  e.  U. K  /\  <. A ,  y
>.  e.  R ) )
2927, 28syl6bbr 263 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  y  e.  {
y  e.  U. K  |  <. A ,  y
>.  e.  R } ) )
301, 2, 3, 29eqrd 3517 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  { y  e.  U. K  |  <. A ,  y >.  e.  R } )
31 eqid 2457 . . . 4  |-  ( y  e.  U. K  |->  <. A ,  y >. )  =  ( y  e. 
U. K  |->  <. A , 
y >. )
3231mptpreima 5506 . . 3  |-  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R )  =  { y  e. 
U. K  |  <. A ,  y >.  e.  R }
3330, 32syl6eqr 2516 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R ) )
3411toptopon 19561 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3534biimpi 194 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  U. K ) )
3635ad2antlr 726 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  K  e.  (TopOn `  U. K ) )
3710toptopon 19561 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3837biimpi 194 . . . . . 6  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
3938ad2antrr 725 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  J  e.  (TopOn `  X )
)
40 simprr 757 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  A  e.  X )
4136, 39, 40cnmptc 20289 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  A )  e.  ( K  Cn  J ) )
4236cnmptid 20288 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  y )  e.  ( K  Cn  K ) )
4336, 41, 42cnmpt1t 20292 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |-> 
<. A ,  y >.
)  e.  ( K  Cn  ( J  tX  K ) ) )
44 cnima 19893 . . 3  |-  ( ( ( y  e.  U. K  |->  <. A ,  y
>. )  e.  ( K  Cn  ( J  tX  K ) )  /\  R  e.  ( J  tX  K ) )  -> 
( `' ( y  e.  U. K  |->  <. A ,  y >. )
" R )  e.  K )
4543, 6, 44syl2anc 661 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( `' ( y  e. 
U. K  |->  <. A , 
y >. ) " R
)  e.  K )
4633, 45eqeltrd 2545 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811   _Vcvv 3109    C_ wss 3471   {csn 4032   <.cop 4038   U.cuni 4251    |-> cmpt 4515    X. cxp 5006   `'ccnv 5007   "cima 5011   ` cfv 5594  (class class class)co 6296   Topctop 19521  TopOnctopon 19522    Cn ccn 19852    tX ctx 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cn 19855  df-cnp 19856  df-tx 20189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator