MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasip Structured version   Unicode version

Theorem imasip 15010
Description: The inner product of an image structure. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasip.i  |-  .,  =  ( .i `  R )
imasip.w  |-  I  =  ( .i `  U
)
Assertion
Ref Expression
imasip  |-  ( ph  ->  I  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } )
Distinct variable groups:    q, p, F    R, p, q    ph, p, q    V, p, q
Allowed substitution hints:    B( q, p)    U( q, p)    ., ( q, p)    I( q, p)    Z( q, p)

Proof of Theorem imasip
Dummy variables  u  v  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2454 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2454 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2454 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
6 eqid 2454 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
7 eqid 2454 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
8 imasip.i . . 3  |-  .,  =  ( .i `  R )
9 eqid 2454 . . 3  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
10 eqid 2454 . . 3  |-  ( dist `  R )  =  (
dist `  R )
11 eqid 2454 . . 3  |-  ( le
`  R )  =  ( le `  R
)
12 imasbas.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
13 imasbas.r . . . 4  |-  ( ph  ->  R  e.  Z )
14 eqid 2454 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
151, 2, 12, 13, 3, 14imasplusg 15006 . . 3  |-  ( ph  ->  ( +g  `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
16 eqid 2454 . . . 4  |-  ( .r
`  U )  =  ( .r `  U
)
171, 2, 12, 13, 4, 16imasmulr 15007 . . 3  |-  ( ph  ->  ( .r `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } )
18 eqid 2454 . . . 4  |-  ( .s
`  U )  =  ( .s `  U
)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 15009 . . 3  |-  ( ph  ->  ( .s `  U
)  =  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R ) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
20 eqidd 2455 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } )
21 eqidd 2455 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
22 eqid 2454 . . . 4  |-  ( dist `  U )  =  (
dist `  U )
231, 2, 12, 13, 10, 22imasds 15002 . . 3  |-  ( ph  ->  ( dist `  U
)  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ u  e.  NN  ran  ( z  e.  {
w  e.  ( ( V  X.  V )  ^m  ( 1 ... u ) )  |  ( ( F `  ( 1st `  ( w `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( w `  u
) ) )  =  y  /\  A. v  e.  ( 1 ... (
u  -  1 ) ) ( F `  ( 2nd `  ( w `
 v ) ) )  =  ( F `
 ( 1st `  (
w `  ( v  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( (
dist `  R )  o.  z ) ) ) ,  RR* ,  `'  <  ) ) )
24 eqidd 2455 . . 3  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 21, 23, 24, 12, 13imasval 15000 . 2  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) )
26 eqid 2454 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
2726imasvalstr 14941 . 2  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) Struct  <. 1 , ; 1 2 >.
28 ipid 14858 . 2  |-  .i  = Slot  ( .i `  ndx )
29 snsstp3 4169 . . . 4  |-  { <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } >. } 
C_  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s `  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } >. }
30 ssun2 3654 . . . 4  |-  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s `  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } >. } 
C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )
3129, 30sstri 3498 . . 3  |-  { <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } >. } 
C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )
32 ssun1 3653 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3331, 32sstri 3498 . 2  |-  { <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. } >. } 
C_  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  ( .s
`  U ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
34 fvex 5858 . . . 4  |-  ( Base `  R )  e.  _V
352, 34syl6eqel 2550 . . 3  |-  ( ph  ->  V  e.  _V )
36 snex 4678 . . . . . 6  |-  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( p  .,  q ) >. }  e.  _V
3736rgenw 2815 . . . . 5  |-  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. }  e.  _V
38 iunexg 6749 . . . . 5  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. }  e.  _V )
3935, 37, 38sylancl 660 . . . 4  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  e.  _V )
4039ralrimivw 2869 . . 3  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  e.  _V )
41 iunexg 6749 . . 3  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. }  e.  _V )
4235, 40, 41syl2anc 659 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p  .,  q ) >. }  e.  _V )
43 imasip.w . 2  |-  I  =  ( .i `  U
)
4425, 27, 28, 33, 42, 43strfv3 14753 1  |-  ( ph  ->  I  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p  .,  q )
>. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    u. cun 3459   {csn 4016   {ctp 4020   <.cop 4022   U_ciun 4315   `'ccnv 4987    o. ccom 4992   -onto->wfo 5568   ` cfv 5570  (class class class)co 6270   1c1 9482   2c2 10581  ;cdc 10976   ndxcnx 14713   Basecbs 14716   +g cplusg 14784   .rcmulr 14785  Scalarcsca 14787   .scvsca 14788   .icip 14789  TopSetcts 14790   lecple 14791   distcds 14793   TopOpenctopn 14911   qTop cqtop 14992    "s cimas 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-imas 14997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator