MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Unicode version

Theorem imasf1oxmet 19949
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasf1oxmet.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasf1oxmet.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasf1oxmet.r  |-  ( ph  ->  R  e.  Z )
imasf1oxmet.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
imasf1oxmet.d  |-  D  =  ( dist `  U
)
imasf1oxmet.m  |-  ( ph  ->  E  e.  ( *Met `  V ) )
Assertion
Ref Expression
imasf1oxmet  |-  ( ph  ->  D  e.  ( *Met `  B ) )

Proof of Theorem imasf1oxmet
Dummy variables  a 
b  x  y  z  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasf1oxmet.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasf1oxmet.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> B )
4 f1ofo 5647 . . . . 5  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
53, 4syl 16 . . . 4  |-  ( ph  ->  F : V -onto-> B
)
6 imasf1oxmet.r . . . 4  |-  ( ph  ->  R  e.  Z )
7 eqid 2442 . . . 4  |-  ( dist `  R )  =  (
dist `  R )
8 imasf1oxmet.d . . . 4  |-  D  =  ( dist `  U
)
91, 2, 5, 6, 7, 8imasdsfn 14451 . . 3  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
101adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  U  =  ( F  "s  R ) )
112adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  V  =  ( Base `  R ) )
123adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  F : V -1-1-onto-> B )
136adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  R  e.  Z )
14 imasf1oxmet.e . . . . . . . 8  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
15 imasf1oxmet.m . . . . . . . . 9  |-  ( ph  ->  E  e.  ( *Met `  V ) )
1615adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  E  e.  ( *Met `  V ) )
17 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
a  e.  V )
18 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
b  e.  V )
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 19948 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a ) D ( F `  b ) )  =  ( a E b ) )
20 xmetcl 19905 . . . . . . . . 9  |-  ( ( E  e.  ( *Met `  V )  /\  a  e.  V  /\  b  e.  V
)  ->  ( a E b )  e. 
RR* )
21203expb 1188 . . . . . . . 8  |-  ( ( E  e.  ( *Met `  V )  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  e.  RR* )
2215, 21sylan 471 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  e.  RR* )
2319, 22eqeltrd 2516 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a ) D ( F `  b ) )  e.  RR* )
2423ralrimivva 2807 . . . . 5  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e.  RR* )
25 f1ofn 5641 . . . . . . . . 9  |-  ( F : V -1-1-onto-> B  ->  F  Fn  V )
263, 25syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  V )
27 oveq2 6098 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
) D y )  =  ( ( F `
 a ) D ( F `  b
) ) )
2827eleq1d 2508 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  e.  RR*  <->  ( ( F `  a ) D ( F `  b ) )  e. 
RR* ) )
2928ralrn 5845 . . . . . . . 8  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F ( ( F `  a ) D y )  e.  RR*  <->  A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e. 
RR* ) )
3026, 29syl 16 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( F `  a ) D y )  e. 
RR* 
<-> 
A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e.  RR* )
)
31 forn 5622 . . . . . . . . 9  |-  ( F : V -onto-> B  ->  ran  F  =  B )
325, 31syl 16 . . . . . . . 8  |-  ( ph  ->  ran  F  =  B )
3332raleqdv 2922 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( F `  a ) D y )  e. 
RR* 
<-> 
A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
)
3430, 33bitr3d 255 . . . . . 6  |-  ( ph  ->  ( A. b  e.  V  ( ( F `
 a ) D ( F `  b
) )  e.  RR*  <->  A. y  e.  B  (
( F `  a
) D y )  e.  RR* ) )
3534ralbidv 2734 . . . . 5  |-  ( ph  ->  ( A. a  e.  V  A. b  e.  V  ( ( F `
 a ) D ( F `  b
) )  e.  RR*  <->  A. a  e.  V  A. y  e.  B  (
( F `  a
) D y )  e.  RR* ) )
3624, 35mpbid 210 . . . 4  |-  ( ph  ->  A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
37 oveq1 6097 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x D y )  =  ( ( F `
 a ) D y ) )
3837eleq1d 2508 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( x D y )  e.  RR*  <->  ( ( F `  a ) D y )  e. 
RR* ) )
3938ralbidv 2734 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  B  ( x D y )  e.  RR*  <->  A. y  e.  B  ( ( F `  a ) D y )  e. 
RR* ) )
4039ralrn 5845 . . . . . 6  |-  ( F  Fn  V  ->  ( A. x  e.  ran  F A. y  e.  B  ( x D y )  e.  RR*  <->  A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e. 
RR* ) )
4126, 40syl 16 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( x D y )  e. 
RR* 
<-> 
A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
)
4232raleqdv 2922 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( x D y )  e. 
RR* 
<-> 
A. x  e.  B  A. y  e.  B  ( x D y )  e.  RR* )
)
4341, 42bitr3d 255 . . . 4  |-  ( ph  ->  ( A. a  e.  V  A. y  e.  B  ( ( F `
 a ) D y )  e.  RR*  <->  A. x  e.  B  A. y  e.  B  (
x D y )  e.  RR* ) )
4436, 43mpbid 210 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x D y )  e.  RR* )
45 ffnov 6193 . . 3  |-  ( D : ( B  X.  B ) --> RR*  <->  ( D  Fn  ( B  X.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x D y )  e. 
RR* ) )
469, 44, 45sylanbrc 664 . 2  |-  ( ph  ->  D : ( B  X.  B ) --> RR* )
47 xmeteq0 19912 . . . . . . . 8  |-  ( ( E  e.  ( *Met `  V )  /\  a  e.  V  /\  b  e.  V
)  ->  ( (
a E b )  =  0  <->  a  =  b ) )
4816, 17, 18, 47syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( a E b )  =  0  <-> 
a  =  b ) )
4919eqeq1d 2450 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( a E b )  =  0 ) )
50 f1of1 5639 . . . . . . . . 9  |-  ( F : V -1-1-onto-> B  ->  F : V -1-1-> B )
513, 50syl 16 . . . . . . . 8  |-  ( ph  ->  F : V -1-1-> B
)
52 f1fveq 5974 . . . . . . . 8  |-  ( ( F : V -1-1-> B  /\  ( a  e.  V  /\  b  e.  V
) )  ->  (
( F `  a
)  =  ( F `
 b )  <->  a  =  b ) )
5351, 52sylan 471 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
a  =  b ) )
5448, 49, 533bitr4d 285 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( F `  a
)  =  ( F `
 b ) ) )
5516adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  E  e.  ( *Met `  V ) )
56 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  c  e.  V )
5717adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  a  e.  V )
5818adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  b  e.  V )
59 xmettri2 19914 . . . . . . . . . 10  |-  ( ( E  e.  ( *Met `  V )  /\  ( c  e.  V  /\  a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  <_  ( (
c E a ) +e ( c E b ) ) )
6055, 56, 57, 58, 59syl13anc 1220 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
a E b )  <_  ( ( c E a ) +e ( c E b ) ) )
6119adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  a
) D ( F `
 b ) )  =  ( a E b ) )
6210adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  U  =  ( F  "s  R
) )
6311adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  V  =  ( Base `  R
) )
6412adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  F : V -1-1-onto-> B )
6513adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  R  e.  Z )
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 19948 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  c
) D ( F `
 a ) )  =  ( c E a ) )
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 19948 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  c
) D ( F `
 b ) )  =  ( c E b ) )
6866, 67oveq12d 6108 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( ( F `  c ) D ( F `  a ) ) +e ( ( F `  c
) D ( F `
 b ) ) )  =  ( ( c E a ) +e ( c E b ) ) )
6960, 61, 683brtr4d 4321 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  a
) D ( F `
 b ) )  <_  ( ( ( F `  c ) D ( F `  a ) ) +e ( ( F `
 c ) D ( F `  b
) ) ) )
7069ralrimiva 2798 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) +e ( ( F `  c ) D ( F `  b ) ) ) )
71 oveq1 6097 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  c )  ->  (
z D ( F `
 a ) )  =  ( ( F `
 c ) D ( F `  a
) ) )
72 oveq1 6097 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  c )  ->  (
z D ( F `
 b ) )  =  ( ( F `
 c ) D ( F `  b
) ) )
7371, 72oveq12d 6108 . . . . . . . . . . . 12  |-  ( z  =  ( F `  c )  ->  (
( z D ( F `  a ) ) +e ( z D ( F `
 b ) ) )  =  ( ( ( F `  c
) D ( F `
 a ) ) +e ( ( F `  c ) D ( F `  b ) ) ) )
7473breq2d 4303 . . . . . . . . . . 11  |-  ( z  =  ( F `  c )  ->  (
( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) )  <-> 
( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) +e ( ( F `  c ) D ( F `  b ) ) ) ) )
7574ralrn 5845 . . . . . . . . . 10  |-  ( F  Fn  V  ->  ( A. z  e.  ran  F ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) )  <->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) +e ( ( F `  c ) D ( F `  b ) ) ) ) )
7626, 75syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e. 
ran  F ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) )  <->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( ( F `
 c ) D ( F `  a
) ) +e
( ( F `  c ) D ( F `  b ) ) ) ) )
7732raleqdv 2922 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e. 
ran  F ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) ) )
7876, 77bitr3d 255 . . . . . . . 8  |-  ( ph  ->  ( A. c  e.  V  ( ( F `
 a ) D ( F `  b
) )  <_  (
( ( F `  c ) D ( F `  a ) ) +e ( ( F `  c
) D ( F `
 b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) ) )
7978adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( A. c  e.  V  ( ( F `
 a ) D ( F `  b
) )  <_  (
( ( F `  c ) D ( F `  a ) ) +e ( ( F `  c
) D ( F `
 b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) ) )
8070, 79mpbid 210 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) )
8154, 80jca 532 . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) ) )
8281ralrimivva 2807 . . . 4  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) ) )
8327eqeq1d 2450 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  =  0  <->  (
( F `  a
) D ( F `
 b ) )  =  0 ) )
84 eqeq2 2451 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
)  =  y  <->  ( F `  a )  =  ( F `  b ) ) )
8583, 84bibi12d 321 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( ( F `
 a ) D y )  =  0  <-> 
( F `  a
)  =  y )  <-> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( F `  a
)  =  ( F `
 b ) ) ) )
86 oveq2 6098 . . . . . . . . . . . 12  |-  ( y  =  ( F `  b )  ->  (
z D y )  =  ( z D ( F `  b
) ) )
8786oveq2d 6106 . . . . . . . . . . 11  |-  ( y  =  ( F `  b )  ->  (
( z D ( F `  a ) ) +e ( z D y ) )  =  ( ( z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) )
8827, 87breq12d 4304 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) +e ( z D y ) )  <-> 
( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) ) )
8988ralbidv 2734 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  ( A. z  e.  B  ( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) +e ( z D y ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) +e ( z D ( F `  b ) ) ) ) )
9085, 89anbi12d 710 . . . . . . . 8  |-  ( y  =  ( F `  b )  ->  (
( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) )  <->  ( (
( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a
) D ( F `
 b ) )  <_  ( ( z D ( F `  a ) ) +e ( z D ( F `  b
) ) ) ) ) )
9190ralrn 5845 . . . . . . 7  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) )  <->  A. b  e.  V  ( (
( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a
) D ( F `
 b ) )  <_  ( ( z D ( F `  a ) ) +e ( z D ( F `  b
) ) ) ) ) )
9226, 91syl 16 . . . . . 6  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) )  <->  A. b  e.  V  ( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) ) ) )
9332raleqdv 2922 . . . . . 6  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) )  <->  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) ) ) )
9492, 93bitr3d 255 . . . . 5  |-  ( ph  ->  ( A. b  e.  V  ( ( ( ( F `  a
) D ( F `
 b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) )  <->  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) ) ) )
9594ralbidv 2734 . . . 4  |-  ( ph  ->  ( A. a  e.  V  A. b  e.  V  ( ( ( ( F `  a
) D ( F `
 b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) +e
( z D ( F `  b ) ) ) )  <->  A. a  e.  V  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) ) ) )
9682, 95mpbid 210 . . 3  |-  ( ph  ->  A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) ) )
9737eqeq1d 2450 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
( x D y )  =  0  <->  (
( F `  a
) D y )  =  0 ) )
98 eqeq1 2448 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x  =  y  <->  ( F `  a )  =  y ) )
9997, 98bibi12d 321 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( ( x D y )  =  0  <-> 
x  =  y )  <-> 
( ( ( F `
 a ) D y )  =  0  <-> 
( F `  a
)  =  y ) ) )
100 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  ( F `  a )  ->  (
z D x )  =  ( z D ( F `  a
) ) )
101100oveq1d 6105 . . . . . . . . . 10  |-  ( x  =  ( F `  a )  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D ( F `
 a ) ) +e ( z D y ) ) )
10237, 101breq12d 4304 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) +e ( z D y ) ) ) )
103102ralbidv 2734 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  ( A. z  e.  B  ( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <->  A. z  e.  B  ( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) +e ( z D y ) ) ) )
10499, 103anbi12d 710 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  (
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )  <->  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) ) ) )
105104ralbidv 2734 . . . . . 6  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )  <->  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) ) ) )
106105ralrn 5845 . . . . 5  |-  ( F  Fn  V  ->  ( A. x  e.  ran  F A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )  <->  A. a  e.  V  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) +e ( z D y ) ) ) ) )
10726, 106syl 16 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <->  A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) ) ) )
10832raleqdv 2922 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <->  A. x  e.  B  A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) ) )
109107, 108bitr3d 255 . . 3  |-  ( ph  ->  ( A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a
) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) +e
( z D y ) ) )  <->  A. x  e.  B  A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
11096, 109mpbid 210 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
11115elfvexd 5717 . . . 4  |-  ( ph  ->  V  e.  _V )
112 fornex 6545 . . . 4  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
113111, 5, 112sylc 60 . . 3  |-  ( ph  ->  B  e.  _V )
114 isxmet 19898 . . 3  |-  ( B  e.  _V  ->  ( D  e.  ( *Met `  B )  <->  ( D : ( B  X.  B ) --> RR*  /\  A. x  e.  B  A. y  e.  B  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  B  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
115113, 114syl 16 . 2  |-  ( ph  ->  ( D  e.  ( *Met `  B
)  <->  ( D :
( B  X.  B
) --> RR*  /\  A. x  e.  B  A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
11646, 110, 115mpbir2and 913 1  |-  ( ph  ->  D  e.  ( *Met `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971   class class class wbr 4291    X. cxp 4837   ran crn 4840    |` cres 4841    Fn wfn 5412   -->wf 5413   -1-1->wf1 5414   -onto->wfo 5415   -1-1-onto->wf1o 5416   ` cfv 5417  (class class class)co 6090   0cc0 9281   RR*cxr 9416    <_ cle 9418   +ecxad 11086   Basecbs 14173   distcds 14246    "s cimas 14441   *Metcxmt 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fsupp 7620  df-sup 7690  df-oi 7723  df-card 8108  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-uz 10861  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-fz 11437  df-fzo 11548  df-seq 11806  df-hash 12103  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-sca 14253  df-vsca 14254  df-ip 14255  df-tset 14256  df-ple 14257  df-ds 14259  df-0g 14379  df-gsum 14380  df-xrs 14439  df-imas 14445  df-mre 14523  df-mrc 14524  df-acs 14526  df-mnd 15414  df-submnd 15464  df-mulg 15547  df-cntz 15834  df-cmn 16278  df-xmet 17809
This theorem is referenced by:  imasf1omet  19950  xpsxmet  19954  imasf1obl  20062  imasf1oxms  20063
  Copyright terms: Public domain W3C validator