MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasds Structured version   Unicode version

Theorem imasds 14761
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasds.e  |-  E  =  ( dist `  R
)
imasds.d  |-  D  =  ( dist `  U
)
Assertion
Ref Expression
imasds  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
Distinct variable groups:    g, h, i, n, x, y, F    R, g, h, i, n, x, y    x, U   
x, B, y    x, E, y    ph, g, h, i, n, x, y   
g, V, h
Allowed substitution hints:    B( g, h, i, n)    D( x, y, g, h, i, n)    U( y, g, h, i, n)    E( g, h, i, n)    V( x, y, i, n)    Z( x, y, g, h, i, n)

Proof of Theorem imasds
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2467 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2467 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2467 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
6 eqid 2467 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
7 eqid 2467 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
8 eqid 2467 . . 3  |-  ( .i
`  R )  =  ( .i `  R
)
9 eqid 2467 . . 3  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
10 imasds.e . . 3  |-  E  =  ( dist `  R
)
11 eqid 2467 . . 3  |-  ( le
`  R )  =  ( le `  R
)
12 eqidd 2468 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
13 eqidd 2468 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
14 eqidd 2468 . . 3  |-  ( ph  ->  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) )  =  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R ) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
15 eqidd 2468 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } )
16 eqidd 2468 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
17 eqidd 2468 . . 3  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
18 eqidd 2468 . . 3  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
19 imasbas.f . . 3  |-  ( ph  ->  F : V -onto-> B
)
20 imasbas.r . . 3  |-  ( ph  ->  R  e.  Z )
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20imasval 14759 . 2  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } ) )
22 eqid 2467 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
2322imasvalstr 14700 . 2  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } ) Struct  <. 1 , ; 1 2 >.
24 dsid 14652 . 2  |-  dist  = Slot  ( dist `  ndx )
25 snsstp3 4180 . . 3  |-  { <. (
dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  { <. (TopSet `  ndx ) ,  ( ( TopOpen `  R ) qTop  F ) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }
26 ssun2 3668 . . 3  |-  { <. (TopSet `  ndx ) ,  ( ( TopOpen `  R ) qTop  F ) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
2725, 26sstri 3513 . 2  |-  { <. (
dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
28 fvex 5874 . . . . 5  |-  ( Base `  R )  e.  _V
292, 28syl6eqel 2563 . . . 4  |-  ( ph  ->  V  e.  _V )
30 fornex 6750 . . . 4  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
3129, 19, 30sylc 60 . . 3  |-  ( ph  ->  B  e.  _V )
32 mpt2exga 6856 . . 3  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  e.  _V )
3331, 31, 32syl2anc 661 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  e.  _V )
34 imasds.d . 2  |-  D  =  ( dist `  U
)
3521, 23, 24, 27, 33, 34strfv3 14518 1  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033   U_ciun 4325    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   ran crn 5000    o. ccom 5003   -onto->wfo 5584   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780    ^m cmap 7417   supcsup 7896   1c1 9489    + caddc 9491   RR*cxr 9623    < clt 9624    - cmin 9801   NNcn 10532   2c2 10581  ;cdc 10972   ...cfz 11668   ndxcnx 14480   Basecbs 14483   +g cplusg 14548   .rcmulr 14549  Scalarcsca 14551   .scvsca 14552   .icip 14553  TopSetcts 14554   lecple 14555   distcds 14557   TopOpenctopn 14670    gsumg cgsu 14689   RR*scxrs 14748   qTop cqtop 14751    "s cimas 14752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-plusg 14561  df-mulr 14562  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-imas 14756
This theorem is referenced by:  imasdsfn  14762  imasdsval  14763  imasplusg  14765  imasmulr  14766  imassca  14767  imasvsca  14768  imasip  14769  imastset  14770  imasle  14771
  Copyright terms: Public domain W3C validator