MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasds Structured version   Unicode version

Theorem imasds 14550
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasds.e  |-  E  =  ( dist `  R
)
imasds.d  |-  D  =  ( dist `  U
)
Assertion
Ref Expression
imasds  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
Distinct variable groups:    g, h, i, n, x, y, F    R, g, h, i, n, x, y    x, U   
x, B, y    x, E, y    ph, g, h, i, n, x, y   
g, V, h
Allowed substitution hints:    B( g, h, i, n)    D( x, y, g, h, i, n)    U( y, g, h, i, n)    E( g, h, i, n)    V( x, y, i, n)    Z( x, y, g, h, i, n)

Proof of Theorem imasds
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2451 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2451 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2451 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
6 eqid 2451 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
7 eqid 2451 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
8 eqid 2451 . . 3  |-  ( .i
`  R )  =  ( .i `  R
)
9 eqid 2451 . . 3  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
10 imasds.e . . 3  |-  E  =  ( dist `  R
)
11 eqid 2451 . . 3  |-  ( le
`  R )  =  ( le `  R
)
12 eqidd 2452 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
13 eqidd 2452 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
14 eqidd 2452 . . 3  |-  ( ph  ->  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) )  =  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R ) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
15 eqidd 2452 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } )
16 eqidd 2452 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
17 eqidd 2452 . . 3  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
18 eqidd 2452 . . 3  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
19 imasbas.f . . 3  |-  ( ph  ->  F : V -onto-> B
)
20 imasbas.r . . 3  |-  ( ph  ->  R  e.  Z )
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20imasval 14548 . 2  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } ) )
22 eqid 2451 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
2322imasvalstr 14489 . 2  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } ) Struct  <. 1 , ; 1 2 >.
24 dsid 14441 . 2  |-  dist  = Slot  ( dist `  ndx )
25 snsstp3 4121 . . 3  |-  { <. (
dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  { <. (TopSet `  ndx ) ,  ( ( TopOpen `  R ) qTop  F ) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }
26 ssun2 3615 . . 3  |-  { <. (TopSet `  ndx ) ,  ( ( TopOpen `  R ) qTop  F ) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
2725, 26sstri 3460 . 2  |-  { <. (
dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) >. } )
28 fvex 5796 . . . . 5  |-  ( Base `  R )  e.  _V
292, 28syl6eqel 2545 . . . 4  |-  ( ph  ->  V  e.  _V )
30 fornex 6643 . . . 4  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
3129, 19, 30sylc 60 . . 3  |-  ( ph  ->  B  e.  _V )
32 mpt2exga 6746 . . 3  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  e.  _V )
3331, 31, 32syl2anc 661 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) )  e.  _V )
34 imasds.d . 2  |-  D  =  ( dist `  U
)
3521, 23, 24, 27, 33, 34strfv3 14308 1  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2793   {crab 2797   _Vcvv 3065    u. cun 3421   {csn 3972   {ctp 3976   <.cop 3978   U_ciun 4266    |-> cmpt 4445    X. cxp 4933   `'ccnv 4934   ran crn 4936    o. ccom 4939   -onto->wfo 5511   ` cfv 5513  (class class class)co 6187    |-> cmpt2 6189   1stc1st 6672   2ndc2nd 6673    ^m cmap 7311   supcsup 7788   1c1 9381    + caddc 9383   RR*cxr 9515    < clt 9516    - cmin 9693   NNcn 10420   2c2 10469  ;cdc 10853   ...cfz 11535   ndxcnx 14270   Basecbs 14273   +g cplusg 14337   .rcmulr 14338  Scalarcsca 14340   .scvsca 14341   .icip 14342  TopSetcts 14343   lecple 14344   distcds 14346   TopOpenctopn 14459    gsumg cgsu 14478   RR*scxrs 14537   qTop cqtop 14540    "s cimas 14541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-int 4224  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-1o 7017  df-oadd 7021  df-er 7198  df-en 7408  df-dom 7409  df-sdom 7410  df-fin 7411  df-sup 7789  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-2 10478  df-3 10479  df-4 10480  df-5 10481  df-6 10482  df-7 10483  df-8 10484  df-9 10485  df-10 10486  df-n0 10678  df-z 10745  df-dec 10854  df-uz 10960  df-fz 11536  df-struct 14275  df-ndx 14276  df-slot 14277  df-base 14278  df-plusg 14350  df-mulr 14351  df-sca 14353  df-vsca 14354  df-ip 14355  df-tset 14356  df-ple 14357  df-ds 14359  df-imas 14545
This theorem is referenced by:  imasdsfn  14551  imasdsval  14552  imasplusg  14554  imasmulr  14555  imassca  14556  imasvsca  14557  imasip  14558  imastset  14559  imasle  14560
  Copyright terms: Public domain W3C validator