MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasbas Unicode version

Theorem imasbas 13693
Description: The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
imasbas  |-  ( ph  ->  B  =  ( Base `  U ) )

Proof of Theorem imasbas
Dummy variables  g  h  i  n  p  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2404 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2404 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2404 . . . 4  |-  (Scalar `  R )  =  (Scalar `  R )
6 eqid 2404 . . . 4  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
7 eqid 2404 . . . 4  |-  ( .s
`  R )  =  ( .s `  R
)
8 eqid 2404 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
9 eqid 2404 . . . 4  |-  ( dist `  R )  =  (
dist `  R )
10 eqid 2404 . . . 4  |-  ( le
`  R )  =  ( le `  R
)
11 eqidd 2405 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
12 eqidd 2405 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
13 eqidd 2405 . . . 4  |-  ( ph  ->  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) )  =  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R ) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
14 eqidd 2405 . . . 4  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
15 eqidd 2405 . . . 4  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) )  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
16 eqidd 2405 . . . 4  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
17 imasbas.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
18 imasbas.r . . . 4  |-  ( ph  ->  R  e.  Z )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18imasval 13692 . . 3  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } ) )
20 eqid 2404 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )
2120imasvalstr 13630 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } ) Struct  <. 1 , ; 1
2 >.
22 baseid 13466 . . 3  |-  Base  = Slot  ( Base `  ndx )
23 snsstp1 3909 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. }  C_  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }
24 ssun1 3470 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } 
C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )
2523, 24sstri 3317 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )
26 ssun1 3470 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )
2725, 26sstri 3317 . . 3  |-  { <. (
Base `  ndx ) ,  B >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  R
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )
28 fvex 5701 . . . . 5  |-  ( Base `  R )  e.  _V
292, 28syl6eqel 2492 . . . 4  |-  ( ph  ->  V  e.  _V )
30 fornex 5929 . . . 4  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
3129, 17, 30sylc 58 . . 3  |-  ( ph  ->  B  e.  _V )
32 eqid 2404 . . 3  |-  ( Base `  U )  =  (
Base `  U )
3319, 21, 22, 27, 31, 32strfv3 13457 . 2  |-  ( ph  ->  ( Base `  U
)  =  B )
3433eqcomd 2409 1  |-  ( ph  ->  B  =  ( Base `  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916    u. cun 3278   {csn 3774   {cpr 3775   {ctp 3776   <.cop 3777   U_ciun 4053    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   ran crn 4838    o. ccom 4841   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307    ^m cmap 6977   supcsup 7403   1c1 8947    + caddc 8949   RR*cxr 9075    < clt 9076    - cmin 9247   NNcn 9956   2c2 10005  ;cdc 10338   ...cfz 10999   ndxcnx 13421   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488  TopSetcts 13490   lecple 13491   distcds 13493   TopOpenctopn 13604   RR* scxrs 13677    gsumg cgsu 13679   qTop cqtop 13684    "s cimas 13685
This theorem is referenced by:  divsbas  13725  xpsbas  13754  imasmnd2  14687  imasgrp2  14888  imasrng  15680  imastopn  17705  imastps  17706  imasf1oxms  18472  imasf1oms  18473  imasgim  27132  isnumbasgrplem1  27134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-imas 13689
  Copyright terms: Public domain W3C validator