Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imambfm Structured version   Unicode version

Theorem imambfm 28470
Description: If the sigma-algebra in the range of a given function is generated by a collection of basic sets  K, then to check the measurability of that function, we need only consider inverse images of basic sets  a. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
imambfm.1  |-  ( ph  ->  K  e.  _V )
imambfm.2  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
imambfm.3  |-  ( ph  ->  T  =  (sigaGen `  K
) )
Assertion
Ref Expression
imambfm  |-  ( ph  ->  ( F  e.  ( SMblFnM T )  <->  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) ) )
Distinct variable groups:    F, a    K, a    S, a    T, a    ph, a

Proof of Theorem imambfm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imambfm.2 . . . . 5  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
21adantr 463 . . . 4  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  S  e.  U. ran sigAlgebra )
3 imambfm.3 . . . . . 6  |-  ( ph  ->  T  =  (sigaGen `  K
) )
4 imambfm.1 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
54sgsiga 28372 . . . . . 6  |-  ( ph  ->  (sigaGen `  K )  e.  U. ran sigAlgebra )
63, 5eqeltrd 2542 . . . . 5  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
76adantr 463 . . . 4  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  T  e.  U. ran sigAlgebra )
8 simpr 459 . . . 4  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  F  e.  ( SMblFnM T ) )
92, 7, 8mbfmf 28463 . . 3  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  F : U. S
--> U. T )
101ad2antrr 723 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  S  e.  U. ran sigAlgebra )
116ad2antrr 723 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  T  e.  U. ran sigAlgebra )
12 simplr 753 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  F  e.  ( SMblFnM T ) )
13 sssigagen 28375 . . . . . . . . 9  |-  ( K  e.  _V  ->  K  C_  (sigaGen `  K )
)
144, 13syl 16 . . . . . . . 8  |-  ( ph  ->  K  C_  (sigaGen `  K
) )
1514, 3sseqtr4d 3526 . . . . . . 7  |-  ( ph  ->  K  C_  T )
1615ad2antrr 723 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  K  C_  T )
17 simpr 459 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  a  e.  K )
1816, 17sseldd 3490 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  a  e.  T )
1910, 11, 12, 18mbfmcnvima 28465 . . . 4  |-  ( ( ( ph  /\  F  e.  ( SMblFnM T ) )  /\  a  e.  K )  ->  ( `' F " a )  e.  S )
2019ralrimiva 2868 . . 3  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  A. a  e.  K  ( `' F " a )  e.  S )
219, 20jca 530 . 2  |-  ( (
ph  /\  F  e.  ( SMblFnM T ) )  ->  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )
22 unielsiga 28358 . . . . . 6  |-  ( T  e.  U. ran sigAlgebra  ->  U. T  e.  T )
236, 22syl 16 . . . . 5  |-  ( ph  ->  U. T  e.  T
)
2423adantr 463 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  U. T  e.  T
)
25 unielsiga 28358 . . . . . 6  |-  ( S  e.  U. ran sigAlgebra  ->  U. S  e.  S )
261, 25syl 16 . . . . 5  |-  ( ph  ->  U. S  e.  S
)
2726adantr 463 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  U. S  e.  S
)
28 simprl 754 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  F : U. S
--> U. T )
29 elmapg 7425 . . . . 5  |-  ( ( U. T  e.  T  /\  U. S  e.  S
)  ->  ( F  e.  ( U. T  ^m  U. S )  <->  F : U. S --> U. T ) )
3029biimpar 483 . . . 4  |-  ( ( ( U. T  e.  T  /\  U. S  e.  S )  /\  F : U. S --> U. T
)  ->  F  e.  ( U. T  ^m  U. S ) )
3124, 27, 28, 30syl21anc 1225 . . 3  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  F  e.  ( U. T  ^m  U. S ) )
323adantr 463 . . . . . 6  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  T  =  (sigaGen `  K ) )
33 simpl 455 . . . . . . . . 9  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ph )
34 ssrab2 3571 . . . . . . . . . . 11  |-  { a  e.  T  |  ( `' F " a )  e.  S }  C_  T
35 pwuni 4668 . . . . . . . . . . 11  |-  T  C_  ~P U. T
3634, 35sstri 3498 . . . . . . . . . 10  |-  { a  e.  T  |  ( `' F " a )  e.  S }  C_  ~P U. T
3736a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  { a  e.  T  |  ( `' F " a )  e.  S }  C_  ~P U. T )
38 fimacnv 5995 . . . . . . . . . . . . 13  |-  ( F : U. S --> U. T  ->  ( `' F " U. T )  =  U. S )
3938ad2antrl 725 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( `' F " U. T )  = 
U. S )
4039, 27eqeltrd 2542 . . . . . . . . . . 11  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( `' F " U. T )  e.  S )
41 imaeq2 5321 . . . . . . . . . . . . 13  |-  ( a  =  U. T  -> 
( `' F "
a )  =  ( `' F " U. T
) )
4241eleq1d 2523 . . . . . . . . . . . 12  |-  ( a  =  U. T  -> 
( ( `' F " a )  e.  S  <->  ( `' F " U. T
)  e.  S ) )
4342elrab 3254 . . . . . . . . . . 11  |-  ( U. T  e.  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( U. T  e.  T  /\  ( `' F " U. T
)  e.  S ) )
4424, 40, 43sylanbrc 662 . . . . . . . . . 10  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  U. T  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )
456ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  T  e.  U. ran sigAlgebra )
4645, 22syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  U. T  e.  T )
47 elrabi 3251 . . . . . . . . . . . . . 14  |-  ( x  e.  { a  e.  T  |  ( `' F " a )  e.  S }  ->  x  e.  T )
4847adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  x  e.  T )
49 difelsiga 28363 . . . . . . . . . . . . 13  |-  ( ( T  e.  U. ran sigAlgebra  /\  U. T  e.  T  /\  x  e.  T )  ->  ( U. T  \  x )  e.  T
)
5045, 46, 48, 49syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( U. T  \  x
)  e.  T )
51 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  F : U. S --> U. T
)
52 ffun 5715 . . . . . . . . . . . . . 14  |-  ( F : U. S --> U. T  ->  Fun  F )
53 difpreima 5991 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( `' F " ( U. T  \  x ) )  =  ( ( `' F " U. T )  \ 
( `' F "
x ) ) )
5451, 52, 533syl 20 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( `' F " ( U. T  \  x ) )  =  ( ( `' F " U. T
)  \  ( `' F " x ) ) )
5539difeq1d 3607 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( ( `' F " U. T
)  \  ( `' F " x ) )  =  ( U. S  \  ( `' F "
x ) ) )
5655adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  (
( `' F " U. T )  \  ( `' F " x ) )  =  ( U. S  \  ( `' F " x ) ) )
571ad2antrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  S  e.  U. ran sigAlgebra )
5857, 25syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  U. S  e.  S )
59 imaeq2 5321 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  x  ->  ( `' F " a )  =  ( `' F " x ) )
6059eleq1d 2523 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  x  ->  (
( `' F "
a )  e.  S  <->  ( `' F " x )  e.  S ) )
6160elrab 3254 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( x  e.  T  /\  ( `' F " x )  e.  S ) )
6261simprbi 462 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { a  e.  T  |  ( `' F " a )  e.  S }  ->  ( `' F " x )  e.  S )
6362adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( `' F " x )  e.  S )
64 difelsiga 28363 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  U. ran sigAlgebra  /\  U. S  e.  S  /\  ( `' F " x )  e.  S )  -> 
( U. S  \ 
( `' F "
x ) )  e.  S )
6557, 58, 63, 64syl3anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( U. S  \  ( `' F " x ) )  e.  S )
6656, 65eqeltrd 2542 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  (
( `' F " U. T )  \  ( `' F " x ) )  e.  S )
6754, 66eqeltrd 2542 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( `' F " ( U. T  \  x ) )  e.  S )
68 imaeq2 5321 . . . . . . . . . . . . . 14  |-  ( a  =  ( U. T  \  x )  ->  ( `' F " a )  =  ( `' F " ( U. T  \  x ) ) )
6968eleq1d 2523 . . . . . . . . . . . . 13  |-  ( a  =  ( U. T  \  x )  ->  (
( `' F "
a )  e.  S  <->  ( `' F " ( U. T  \  x ) )  e.  S ) )
7069elrab 3254 . . . . . . . . . . . 12  |-  ( ( U. T  \  x
)  e.  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( ( U. T  \  x
)  e.  T  /\  ( `' F " ( U. T  \  x ) )  e.  S ) )
7150, 67, 70sylanbrc 662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )  ->  ( U. T  \  x
)  e.  { a  e.  T  |  ( `' F " a )  e.  S } )
7271ralrimiva 2868 . . . . . . . . . 10  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  A. x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S }  ( U. T  \  x )  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )
736ad3antrrr 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  T  e.  U. ran sigAlgebra )
74 sspwb 4686 . . . . . . . . . . . . . . . . 17  |-  ( { a  e.  T  | 
( `' F "
a )  e.  S }  C_  T  <->  ~P { a  e.  T  |  ( `' F " a )  e.  S }  C_  ~P T )
7534, 74mpbi 208 . . . . . . . . . . . . . . . 16  |-  ~P {
a  e.  T  | 
( `' F "
a )  e.  S }  C_  ~P T
7675sseli 3485 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S }  ->  x  e.  ~P T )
7776ad2antlr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  x  e.  ~P T
)
78 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  x  ~<_  om )
79 sigaclcu 28347 . . . . . . . . . . . . . 14  |-  ( ( T  e.  U. ran sigAlgebra  /\  x  e.  ~P T  /\  x  ~<_  om )  ->  U. x  e.  T
)
8073, 77, 78, 79syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  U. x  e.  T
)
81 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  ( F : U. S
--> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )
8281simpld 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  F : U. S --> U. T )
83 unipreima 27705 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  ( `' F " U. x )  =  U_ y  e.  x  ( `' F " y ) )
8482, 52, 833syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  ( `' F " U. x )  =  U_ y  e.  x  ( `' F " y ) )
851ad3antrrr 727 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  S  e.  U. ran sigAlgebra )
86 simpr 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( F : U. S
--> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  /\  y  e.  x )  ->  y  e.  x )
87 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( F : U. S
--> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  /\  y  e.  x )  ->  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )
88 elelpwi 4010 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  x  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  ->  y  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )
8986, 87, 88syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( F : U. S
--> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  /\  y  e.  x )  ->  y  e.  { a  e.  T  |  ( `' F " a )  e.  S } )
90 imaeq2 5321 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  y  ->  ( `' F " a )  =  ( `' F " y ) )
9190eleq1d 2523 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  y  ->  (
( `' F "
a )  e.  S  <->  ( `' F " y )  e.  S ) )
9291elrab 3254 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( y  e.  T  /\  ( `' F " y )  e.  S ) )
9392simprbi 462 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  { a  e.  T  |  ( `' F " a )  e.  S }  ->  ( `' F " y )  e.  S )
9489, 93syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( F : U. S
--> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  /\  y  e.  x )  ->  ( `' F " y )  e.  S )
9594ralrimiva 2868 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  A. y  e.  x  ( `' F " y )  e.  S )
96 nfcv 2616 . . . . . . . . . . . . . . . 16  |-  F/_ y
x
9796sigaclcuni 28348 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  U. ran sigAlgebra  /\  A. y  e.  x  ( `' F " y )  e.  S  /\  x  ~<_  om )  ->  U_ y  e.  x  ( `' F " y )  e.  S )
9885, 95, 78, 97syl3anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  U_ y  e.  x  ( `' F " y )  e.  S )
9984, 98eqeltrd 2542 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  ( `' F " U. x )  e.  S
)
100 imaeq2 5321 . . . . . . . . . . . . . . 15  |-  ( a  =  U. x  -> 
( `' F "
a )  =  ( `' F " U. x
) )
101100eleq1d 2523 . . . . . . . . . . . . . 14  |-  ( a  =  U. x  -> 
( ( `' F " a )  e.  S  <->  ( `' F " U. x
)  e.  S ) )
102101elrab 3254 . . . . . . . . . . . . 13  |-  ( U. x  e.  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( U. x  e.  T  /\  ( `' F " U. x
)  e.  S ) )
10380, 99, 102sylanbrc 662 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  /\  x  ~<_  om )  ->  U. x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } )
104103ex 432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  /\  x  e.  ~P { a  e.  T  |  ( `' F " a )  e.  S } )  ->  (
x  ~<_  om  ->  U. x  e.  { a  e.  T  |  ( `' F " a )  e.  S } ) )
105104ralrimiva 2868 . . . . . . . . . 10  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  A. x  e.  ~P  { a  e.  T  | 
( `' F "
a )  e.  S }  ( x  ~<_  om 
->  U. x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } ) )
10644, 72, 1053jca 1174 . . . . . . . . 9  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( U. T  e.  { a  e.  T  |  ( `' F " a )  e.  S }  /\  A. x  e. 
{ a  e.  T  |  ( `' F " a )  e.  S }  ( U. T  \  x )  e.  {
a  e.  T  | 
( `' F "
a )  e.  S }  /\  A. x  e. 
~P  { a  e.  T  |  ( `' F " a )  e.  S }  (
x  ~<_  om  ->  U. x  e.  { a  e.  T  |  ( `' F " a )  e.  S } ) ) )
107 rabexg 4587 . . . . . . . . . . 11  |-  ( T  e.  U. ran sigAlgebra  ->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  _V )
108 issiga 28341 . . . . . . . . . . 11  |-  ( { a  e.  T  | 
( `' F "
a )  e.  S }  e.  _V  ->  ( { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `  U. T )  <->  ( {
a  e.  T  | 
( `' F "
a )  e.  S }  C_  ~P U. T  /\  ( U. T  e. 
{ a  e.  T  |  ( `' F " a )  e.  S }  /\  A. x  e. 
{ a  e.  T  |  ( `' F " a )  e.  S }  ( U. T  \  x )  e.  {
a  e.  T  | 
( `' F "
a )  e.  S }  /\  A. x  e. 
~P  { a  e.  T  |  ( `' F " a )  e.  S }  (
x  ~<_  om  ->  U. x  e.  { a  e.  T  |  ( `' F " a )  e.  S } ) ) ) ) )
1096, 107, 1083syl 20 . . . . . . . . . 10  |-  ( ph  ->  ( { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. T )  <-> 
( { a  e.  T  |  ( `' F " a )  e.  S }  C_  ~P U. T  /\  ( U. T  e.  { a  e.  T  |  ( `' F " a )  e.  S }  /\  A. x  e.  { a  e.  T  |  ( `' F " a )  e.  S }  ( U. T  \  x
)  e.  { a  e.  T  |  ( `' F " a )  e.  S }  /\  A. x  e.  ~P  {
a  e.  T  | 
( `' F "
a )  e.  S }  ( x  ~<_  om 
->  U. x  e.  {
a  e.  T  | 
( `' F "
a )  e.  S } ) ) ) ) )
110109biimpar 483 . . . . . . . . 9  |-  ( (
ph  /\  ( {
a  e.  T  | 
( `' F "
a )  e.  S }  C_  ~P U. T  /\  ( U. T  e. 
{ a  e.  T  |  ( `' F " a )  e.  S }  /\  A. x  e. 
{ a  e.  T  |  ( `' F " a )  e.  S }  ( U. T  \  x )  e.  {
a  e.  T  | 
( `' F "
a )  e.  S }  /\  A. x  e. 
~P  { a  e.  T  |  ( `' F " a )  e.  S }  (
x  ~<_  om  ->  U. x  e.  { a  e.  T  |  ( `' F " a )  e.  S } ) ) ) )  ->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. T ) )
11133, 37, 106, 110syl12anc 1224 . . . . . . . 8  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. T ) )
1123unieqd 4245 . . . . . . . . . . . 12  |-  ( ph  ->  U. T  =  U. (sigaGen `  K ) )
113 unisg 28373 . . . . . . . . . . . . 13  |-  ( K  e.  _V  ->  U. (sigaGen `  K )  =  U. K )
1144, 113syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  U. (sigaGen `  K
)  =  U. K
)
115112, 114eqtrd 2495 . . . . . . . . . . 11  |-  ( ph  ->  U. T  =  U. K )
116115fveq2d 5852 . . . . . . . . . 10  |-  ( ph  ->  (sigAlgebra `  U. T )  =  (sigAlgebra `  U. K ) )
117116eleq2d 2524 . . . . . . . . 9  |-  ( ph  ->  ( { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. T )  <->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `  U. K ) ) )
118117adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. T )  <->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `  U. K ) ) )
119111, 118mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `
 U. K ) )
12015adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  K  C_  T
)
121 simprr 755 . . . . . . . 8  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  A. a  e.  K  ( `' F " a )  e.  S )
122 ssrab 3564 . . . . . . . 8  |-  ( K 
C_  { a  e.  T  |  ( `' F " a )  e.  S }  <->  ( K  C_  T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )
123120, 121, 122sylanbrc 662 . . . . . . 7  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  K  C_  { a  e.  T  |  ( `' F " a )  e.  S } )
124 sigagenss 28379 . . . . . . 7  |-  ( ( { a  e.  T  |  ( `' F " a )  e.  S }  e.  (sigAlgebra `  U. K )  /\  K  C_ 
{ a  e.  T  |  ( `' F " a )  e.  S } )  ->  (sigaGen `  K )  C_  { a  e.  T  |  ( `' F " a )  e.  S } )
125119, 123, 124syl2anc 659 . . . . . 6  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  (sigaGen `  K )  C_ 
{ a  e.  T  |  ( `' F " a )  e.  S } )
12632, 125eqsstrd 3523 . . . . 5  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  T  C_  { a  e.  T  |  ( `' F " a )  e.  S } )
12734a1i 11 . . . . 5  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  { a  e.  T  |  ( `' F " a )  e.  S }  C_  T )
128126, 127eqssd 3506 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  T  =  {
a  e.  T  | 
( `' F "
a )  e.  S } )
129 rabid2 3032 . . . 4  |-  ( T  =  { a  e.  T  |  ( `' F " a )  e.  S }  <->  A. a  e.  T  ( `' F " a )  e.  S )
130128, 129sylib 196 . . 3  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  A. a  e.  T  ( `' F " a )  e.  S )
1311adantr 463 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  S  e.  U. ran sigAlgebra )
1326adantr 463 . . . 4  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  T  e.  U. ran sigAlgebra )
133131, 132ismbfm 28460 . . 3  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  ( F  e.  ( SMblFnM T )  <-> 
( F  e.  ( U. T  ^m  U. S )  /\  A. a  e.  T  ( `' F " a )  e.  S ) ) )
13431, 130, 133mpbir2and 920 . 2  |-  ( (
ph  /\  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) )  ->  F  e.  ( SMblFnM T ) )
13521, 134impbida 830 1  |-  ( ph  ->  ( F  e.  ( SMblFnM T )  <->  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   {crab 2808   _Vcvv 3106    \ cdif 3458    C_ wss 3461   ~Pcpw 3999   U.cuni 4235   U_ciun 4315   class class class wbr 4439   `'ccnv 4987   ran crn 4989   "cima 4991   Fun wfun 5564   -->wf 5566   ` cfv 5570  (class class class)co 6270   omcom 6673    ^m cmap 7412    ~<_ cdom 7507  sigAlgebracsiga 28337  sigaGencsigagen 28368  MblFnMcmbfm 28458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-ac2 8834
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-card 8311  df-acn 8314  df-ac 8488  df-cda 8539  df-siga 28338  df-sigagen 28369  df-mbfm 28459
This theorem is referenced by:  cnmbfm  28471  mbfmco2  28473
  Copyright terms: Public domain W3C validator