MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Structured version   Unicode version

Theorem imaiun 6070
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem imaiun
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3096 . . . 4  |-  ( E. x  e.  B  E. z ( z  e.  C  /\  <. z ,  y >.  e.  A
)  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
2 vex 3079 . . . . . 6  |-  y  e. 
_V
32elima3 5283 . . . . 5  |-  ( y  e.  ( A " C )  <->  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
43rexbii 2858 . . . 4  |-  ( E. x  e.  B  y  e.  ( A " C )  <->  E. x  e.  B  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
5 eliun 4282 . . . . . . 7  |-  ( z  e.  U_ x  e.  B  C  <->  E. x  e.  B  z  e.  C )
65anbi1i 695 . . . . . 6  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
7 r19.41v 2977 . . . . . 6  |-  ( E. x  e.  B  ( z  e.  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
86, 7bitr4i 252 . . . . 5  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
98exbii 1635 . . . 4  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
101, 4, 93bitr4ri 278 . . 3  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. x  e.  B  y  e.  ( A " C ) )
112elima3 5283 . . 3  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  E. z
( z  e.  U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A ) )
12 eliun 4282 . . 3  |-  ( y  e.  U_ x  e.  B  ( A " C )  <->  E. x  e.  B  y  e.  ( A " C ) )
1310, 11, 123bitr4i 277 . 2  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  y  e.  U_ x  e.  B  ( A " C ) )
1413eqriv 2450 1  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2799   <.cop 3990   U_ciun 4278   "cima 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-iun 4280  df-br 4400  df-opab 4458  df-xp 4953  df-cnv 4955  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960
This theorem is referenced by:  imauni  6071  uniqs  7269  hsmexlem4  8708  hsmexlem5  8709  xkococnlem  19363  ismbf3d  21264  mbfimaopnlem  21265  i1fima  21288  i1fd  21291  itg1addlem5  21310  limciun  21501  sibfof  26869  eulerpartlemgh  26904  itg2addnclem2  28591  ftc1anclem6  28619
  Copyright terms: Public domain W3C validator