MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Unicode version

Theorem imaiun 5951
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem imaiun
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2935 . . . 4  |-  ( E. x  e.  B  E. z ( z  e.  C  /\  <. z ,  y >.  e.  A
)  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
2 vex 2919 . . . . . 6  |-  y  e. 
_V
32elima3 5169 . . . . 5  |-  ( y  e.  ( A " C )  <->  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
43rexbii 2691 . . . 4  |-  ( E. x  e.  B  y  e.  ( A " C )  <->  E. x  e.  B  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
5 eliun 4057 . . . . . . 7  |-  ( z  e.  U_ x  e.  B  C  <->  E. x  e.  B  z  e.  C )
65anbi1i 677 . . . . . 6  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
7 r19.41v 2821 . . . . . 6  |-  ( E. x  e.  B  ( z  e.  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
86, 7bitr4i 244 . . . . 5  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
98exbii 1589 . . . 4  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
101, 4, 93bitr4ri 270 . . 3  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. x  e.  B  y  e.  ( A " C ) )
112elima3 5169 . . 3  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  E. z
( z  e.  U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A ) )
12 eliun 4057 . . 3  |-  ( y  e.  U_ x  e.  B  ( A " C )  <->  E. x  e.  B  y  e.  ( A " C ) )
1310, 11, 123bitr4i 269 . 2  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  y  e.  U_ x  e.  B  ( A " C ) )
1413eqriv 2401 1  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2667   <.cop 3777   U_ciun 4053   "cima 4840
This theorem is referenced by:  imauni  5952  uniqs  6923  hsmexlem4  8265  hsmexlem5  8266  xkococnlem  17644  ismbf3d  19499  mbfimaopnlem  19500  i1fima  19523  i1fd  19526  itg1addlem5  19545  limciun  19734  sibfof  24607  itg2addnclem2  26156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-iun 4055  df-br 4173  df-opab 4227  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850
  Copyright terms: Public domain W3C validator