MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainrect Structured version   Unicode version

Theorem imainrect 5439
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 5004 . . 3  |-  ( ( G  i^i  ( A  X.  B ) )  |`  Y )  =  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
21rneqi 5220 . 2  |-  ran  (
( G  i^i  ( A  X.  B ) )  |`  Y )  =  ran  ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
3 df-ima 5005 . 2  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ran  ( ( G  i^i  ( A  X.  B ) )  |`  Y )
4 df-ima 5005 . . . . 5  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  |`  ( Y  i^i  A ) )
5 df-res 5004 . . . . . 6  |-  ( G  |`  ( Y  i^i  A
) )  =  ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )
65rneqi 5220 . . . . 5  |-  ran  ( G  |`  ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
74, 6eqtri 2489 . . . 4  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
87ineq1i 3689 . . 3  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i 
B )
9 cnvin 5404 . . . . . 6  |-  `' ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
10 inxp 5126 . . . . . . . . . 10  |-  ( ( A  X.  _V )  i^i  ( _V  X.  B
) )  =  ( ( A  i^i  _V )  X.  ( _V  i^i  B ) )
11 inv1 3805 . . . . . . . . . . 11  |-  ( A  i^i  _V )  =  A
12 incom 3684 . . . . . . . . . . . 12  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
13 inv1 3805 . . . . . . . . . . . 12  |-  ( B  i^i  _V )  =  B
1412, 13eqtri 2489 . . . . . . . . . . 11  |-  ( _V 
i^i  B )  =  B
1511, 14xpeq12i 5014 . . . . . . . . . 10  |-  ( ( A  i^i  _V )  X.  ( _V  i^i  B
) )  =  ( A  X.  B )
1610, 15eqtr2i 2490 . . . . . . . . 9  |-  ( A  X.  B )  =  ( ( A  X.  _V )  i^i  ( _V  X.  B ) )
1716ineq2i 3690 . . . . . . . 8  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
18 in32 3703 . . . . . . . 8  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )
19 xpindir 5128 . . . . . . . . . . . 12  |-  ( ( Y  i^i  A )  X.  _V )  =  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) )
2019ineq2i 3690 . . . . . . . . . . 11  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( G  i^i  (
( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
21 inass 3701 . . . . . . . . . . 11  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  =  ( G  i^i  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
2220, 21eqtr4i 2492 . . . . . . . . . 10  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( A  X.  _V ) )
2322ineq1i 3689 . . . . . . . . 9  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )
24 inass 3701 . . . . . . . . 9  |-  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  (
( A  X.  _V )  i^i  ( _V  X.  B ) ) )
2523, 24eqtri 2489 . . . . . . . 8  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
2617, 18, 253eqtr4i 2499 . . . . . . 7  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )
2726cnveqi 5168 . . . . . 6  |-  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  `' ( ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  ( _V  X.  B ) )
28 df-res 5004 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  ( B  X.  _V ) )
29 cnvxp 5415 . . . . . . . 8  |-  `' ( _V  X.  B )  =  ( B  X.  _V )
3029ineq2i 3690 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  `' ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( B  X.  _V ) )
3128, 30eqtr4i 2492 . . . . . 6  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
329, 27, 313eqtr4ri 2500 . . . . 5  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
3332dmeqi 5195 . . . 4  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  dom  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
34 incom 3684 . . . . 5  |-  ( B  i^i  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) ) )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
35 dmres 5285 . . . . 5  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  ( B  i^i  dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
) )
36 df-rn 5003 . . . . . 6  |-  ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )
3736ineq1i 3689 . . . . 5  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
3834, 35, 373eqtr4ri 2500 . . . 4  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  |`  B )
39 df-rn 5003 . . . 4  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  dom  `' ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
4033, 38, 393eqtr4ri 2500 . . 3  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  B )
418, 40eqtr4i 2492 . 2  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ran  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
422, 3, 413eqtr4i 2499 1  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374   _Vcvv 3106    i^i cin 3468    X. cxp 4990   `'ccnv 4991   dom cdm 4992   ran crn 4993    |` cres 4994   "cima 4995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-xp 4998  df-rel 4999  df-cnv 5000  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005
This theorem is referenced by:  ecinxp  7376  marypha1lem  7882
  Copyright terms: Public domain W3C validator