Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiinfv Structured version   Unicode version

Theorem imaiinfv 30831
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imaiinfv  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  |^|_ x  e.  B  ( F `  x )  =  |^| ( F
" B ) )
Distinct variable groups:    x, B    x, F
Allowed substitution hint:    A( x)

Proof of Theorem imaiinfv
StepHypRef Expression
1 fnssres 5619 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
2 fniinfv 5850 . . 3  |-  ( ( F  |`  B )  Fn  B  ->  |^|_ x  e.  B  ( ( F  |`  B ) `  x )  =  |^| ran  ( F  |`  B ) )
31, 2syl 16 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  |^|_ x  e.  B  ( ( F  |`  B ) `
 x )  = 
|^| ran  ( F  |`  B ) )
4 fvres 5805 . . . 4  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
54iineq2i 4280 . . 3  |-  |^|_ x  e.  B  ( ( F  |`  B ) `  x )  =  |^|_ x  e.  B  ( F `
 x )
65eqcomi 2409 . 2  |-  |^|_ x  e.  B  ( F `  x )  =  |^|_ x  e.  B  ( ( F  |`  B ) `  x )
7 df-ima 4943 . . 3  |-  ( F
" B )  =  ran  ( F  |`  B )
87inteqi 4220 . 2  |-  |^| ( F " B )  = 
|^| ran  ( F  |`  B )
93, 6, 83eqtr4g 2462 1  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  |^|_ x  e.  B  ( F `  x )  =  |^| ( F
" B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    C_ wss 3406   |^|cint 4216   |^|_ciin 4261   ran crn 4931    |` cres 4932   "cima 4933    Fn wfn 5508   ` cfv 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pr 4618
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-rab 2755  df-v 3053  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-int 4217  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-fv 5521
This theorem is referenced by:  elrfirn  30833
  Copyright terms: Public domain W3C validator