MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Unicode version

Theorem imafi 7714
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imafi  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " X )  e. 
Fin )

Proof of Theorem imafi
StepHypRef Expression
1 imadmres 5437 . 2  |-  ( F
" dom  ( F  |`  X ) )  =  ( F " X
)
2 simpr 461 . . . 4  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  X  e.  Fin )
3 dmres 5238 . . . . 5  |-  dom  ( F  |`  X )  =  ( X  i^i  dom  F )
4 inss1 3677 . . . . 5  |-  ( X  i^i  dom  F )  C_  X
53, 4eqsstri 3493 . . . 4  |-  dom  ( F  |`  X )  C_  X
6 ssfi 7643 . . . 4  |-  ( ( X  e.  Fin  /\  dom  ( F  |`  X ) 
C_  X )  ->  dom  ( F  |`  X )  e.  Fin )
72, 5, 6sylancl 662 . . 3  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  dom  ( F  |`  X )  e.  Fin )
8 resss 5241 . . . . 5  |-  ( F  |`  X )  C_  F
9 dmss 5146 . . . . 5  |-  ( ( F  |`  X )  C_  F  ->  dom  ( F  |`  X )  C_  dom  F )
108, 9mp1i 12 . . . 4  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  dom  ( F  |`  X ) 
C_  dom  F )
11 fores 5736 . . . 4  |-  ( ( Fun  F  /\  dom  ( F  |`  X ) 
C_  dom  F )  ->  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )
1210, 11syldan 470 . . 3  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )
13 fofi 7707 . . 3  |-  ( ( dom  ( F  |`  X )  e.  Fin  /\  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )  ->  ( F " dom  ( F  |`  X ) )  e.  Fin )
147, 12, 13syl2anc 661 . 2  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " dom  ( F  |`  X ) )  e. 
Fin )
151, 14syl5eqelr 2547 1  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " X )  e. 
Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758    i^i cin 3434    C_ wss 3435   dom cdm 4947    |` cres 4949   "cima 4950   Fun wfun 5519   -onto->wfo 5523   Fincfn 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-om 6586  df-1o 7029  df-er 7210  df-en 7420  df-dom 7421  df-fin 7423
This theorem is referenced by:  fissuni  7726  fipreima  7727  fsuppcolem  7760  mapfienOLD  8037  cmpfi  19142  mdegldg  21669  mdegcl  21672  sibfof  26869  eulerpartlemgf  26905  ftc1anclem7  28620  ftc1anc  28622  elrfirn  29178
  Copyright terms: Public domain W3C validator