MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmrn Structured version   Unicode version

Theorem imadmrn 5190
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn  |-  ( A
" dom  A )  =  ran  A

Proof of Theorem imadmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3081 . . . . . . 7  |-  x  e. 
_V
2 vex 3081 . . . . . . 7  |-  y  e. 
_V
31, 2opeldm 5050 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
43pm4.71i 636 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  /\  x  e.  dom  A ) )
5 ancom 451 . . . . 5  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  dom  A )  <->  ( x  e.  dom  A  /\  <. x ,  y >.  e.  A
) )
64, 5bitr2i 253 . . . 4  |-  ( ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A )  <->  <. x ,  y >.  e.  A
)
76exbii 1712 . . 3  |-  ( E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
)  <->  E. x <. x ,  y >.  e.  A
)
87abbii 2554 . 2  |-  { y  |  E. x ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A ) }  =  { y  |  E. x <. x ,  y >.  e.  A }
9 dfima3 5183 . 2  |-  ( A
" dom  A )  =  { y  |  E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
) }
10 dfrn3 5036 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
118, 9, 103eqtr4i 2459 1  |-  ( A
" dom  A )  =  ran  A
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1867   {cab 2405   <.cop 3999   dom cdm 4846   ran crn 4847   "cima 4849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4540  ax-nul 4548  ax-pr 4653
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-br 4418  df-opab 4477  df-xp 4852  df-cnv 4854  df-dm 4856  df-rn 4857  df-res 4858  df-ima 4859
This theorem is referenced by:  cnvimarndm  5201  foima  5807  f1imacnv  5839  fsn2  6069  resfunexg  6137  elunirnALT  6164  fnexALT  6765  uniqs2  7425  mapsn  7513  phplem4  7752  php3  7756  jech9.3  8282  fin4en1  8735  retopbas  21758  plyeq0  23142  rnelshi  27688  poimirlem3  31851  poimirlem30  31878
  Copyright terms: Public domain W3C validator