MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Unicode version

Theorem im2anan9 833
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1  |-  ( ph  ->  ( ps  ->  ch ) )
im2an9.2  |-  ( th 
->  ( ta  ->  et ) )
Assertion
Ref Expression
im2anan9  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  ->  ( ch 
/\  et ) ) )

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21adantr 465 . 2  |-  ( (
ph  /\  th )  ->  ( ps  ->  ch ) )
3 im2an9.2 . . 3  |-  ( th 
->  ( ta  ->  et ) )
43adantl 466 . 2  |-  ( (
ph  /\  th )  ->  ( ta  ->  et ) )
52, 4anim12d 563 1  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  ->  ( ch 
/\  et ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  im2anan9r  834  ax12eq  2255  ax12el  2256  trin  4536  somo  4820  xpss12  5094  f1oun  5821  poxp  6893  soxp  6894  brecop  7402  ingru  9191  genpss  9380  genpnnp  9381  tgcl  19337  txlm  20015
  Copyright terms: Public domain W3C validator