MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxprg Structured version   Unicode version

Theorem iinxprg 4403
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1  |-  ( x  =  A  ->  C  =  D )
iinxprg.2  |-  ( x  =  B  ->  C  =  E )
Assertion
Ref Expression
iinxprg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
|^|_ x  e.  { A ,  B } C  =  ( D  i^i  E
) )
Distinct variable groups:    x, A    x, B    x, D    x, E
Allowed substitution hints:    C( x)    V( x)    W( x)

Proof of Theorem iinxprg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5  |-  ( x  =  A  ->  C  =  D )
21eleq2d 2537 . . . 4  |-  ( x  =  A  ->  (
y  e.  C  <->  y  e.  D ) )
3 iinxprg.2 . . . . 5  |-  ( x  =  B  ->  C  =  E )
43eleq2d 2537 . . . 4  |-  ( x  =  B  ->  (
y  e.  C  <->  y  e.  E ) )
52, 4ralprg 4076 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } y  e.  C  <->  ( y  e.  D  /\  y  e.  E )
) )
65abbidv 2603 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { y  |  A. x  e.  { A ,  B } y  e.  C }  =  {
y  |  ( y  e.  D  /\  y  e.  E ) } )
7 df-iin 4328 . 2  |-  |^|_ x  e.  { A ,  B } C  =  {
y  |  A. x  e.  { A ,  B } y  e.  C }
8 df-in 3483 . 2  |-  ( D  i^i  E )  =  { y  |  ( y  e.  D  /\  y  e.  E ) }
96, 7, 83eqtr4g 2533 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
|^|_ x  e.  { A ,  B } C  =  ( D  i^i  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814    i^i cin 3475   {cpr 4029   |^|_ciin 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-v 3115  df-sbc 3332  df-un 3481  df-in 3483  df-sn 4028  df-pr 4030  df-iin 4328
This theorem is referenced by:  pmapmeet  34569  diameetN  35853  dihmeetlem2N  36096  dihmeetcN  36099  dihmeet  36140
  Copyright terms: Public domain W3C validator