MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinuni Unicode version

Theorem iinuni 3883
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iinuni  |-  ( A  u.  |^| B )  = 
|^|_ x  e.  B  ( A  u.  x
)
Distinct variable groups:    x, A    x, B

Proof of Theorem iinuni
StepHypRef Expression
1 r19.32v 2648 . . . 4  |-  ( A. x  e.  B  (
y  e.  A  \/  y  e.  x )  <->  ( y  e.  A  \/  A. x  e.  B  y  e.  x ) )
2 elun 3226 . . . . 5  |-  ( y  e.  ( A  u.  x )  <->  ( y  e.  A  \/  y  e.  x ) )
32ralbii 2531 . . . 4  |-  ( A. x  e.  B  y  e.  ( A  u.  x
)  <->  A. x  e.  B  ( y  e.  A  \/  y  e.  x
) )
4 vex 2730 . . . . . 6  |-  y  e. 
_V
54elint2 3767 . . . . 5  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
65orbi2i 507 . . . 4  |-  ( ( y  e.  A  \/  y  e.  |^| B )  <-> 
( y  e.  A  \/  A. x  e.  B  y  e.  x )
)
71, 3, 63bitr4ri 271 . . 3  |-  ( ( y  e.  A  \/  y  e.  |^| B )  <->  A. x  e.  B  y  e.  ( A  u.  x ) )
87abbii 2361 . 2  |-  { y  |  ( y  e.  A  \/  y  e. 
|^| B ) }  =  { y  | 
A. x  e.  B  y  e.  ( A  u.  x ) }
9 df-un 3083 . 2  |-  ( A  u.  |^| B )  =  { y  |  ( y  e.  A  \/  y  e.  |^| B ) }
10 df-iin 3806 . 2  |-  |^|_ x  e.  B  ( A  u.  x )  =  {
y  |  A. x  e.  B  y  e.  ( A  u.  x
) }
118, 9, 103eqtr4i 2283 1  |-  ( A  u.  |^| B )  = 
|^|_ x  e.  B  ( A  u.  x
)
Colors of variables: wff set class
Syntax hints:    \/ wo 359    = wceq 1619    e. wcel 1621   {cab 2239   A.wral 2509    u. cun 3076   |^|cint 3760   |^|_ciin 3804
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-v 2729  df-un 3083  df-int 3761  df-iin 3806
  Copyright terms: Public domain W3C validator