MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Structured version   Unicode version

Theorem iinun2 4362
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4350 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iinun2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.32v 2974 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  \/  y  e.  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
2 elun 3606 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32ralbii 2856 . . . 4  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  A. x  e.  A  ( y  e.  B  \/  y  e.  C
) )
4 vex 3084 . . . . . 6  |-  y  e. 
_V
5 eliin 4302 . . . . . 6  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
64, 5ax-mp 5 . . . . 5  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
76orbi2i 521 . . . 4  |-  ( ( y  e.  B  \/  y  e.  |^|_ x  e.  A  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
81, 3, 73bitr4i 280 . . 3  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
9 eliin 4302 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  u.  C )  <->  A. x  e.  A  y  e.  ( B  u.  C
) ) )
104, 9ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  A. x  e.  A  y  e.  ( B  u.  C ) )
11 elun 3606 . . 3  |-  ( y  e.  ( B  u.  |^|_
x  e.  A  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
128, 10, 113bitr4i 280 . 2  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  y  e.  ( B  u.  |^|_ x  e.  A  C )
)
1312eqriv 2418 1  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/ wo 369    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    u. cun 3434   |^|_ciin 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ral 2780  df-v 3083  df-un 3441  df-iin 4299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator