MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss1 Structured version   Unicode version

Theorem iinss1 4286
Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1  |-  ( A 
C_  B  ->  |^|_ x  e.  B  C  C_  |^|_ x  e.  A  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iinss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssralv 3519 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  y  e.  C  ->  A. x  e.  A  y  e.  C ) )
2 vex 3075 . . . 4  |-  y  e. 
_V
3 eliin 4279 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  y  e.  C ) )
42, 3ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  B  C 
<-> 
A. x  e.  B  y  e.  C )
5 eliin 4279 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
62, 5ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
71, 4, 63imtr4g 270 . 2  |-  ( A 
C_  B  ->  (
y  e.  |^|_ x  e.  B  C  ->  y  e.  |^|_ x  e.  A  C ) )
87ssrdv 3465 1  |-  ( A 
C_  B  ->  |^|_ x  e.  B  C  C_  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1758   A.wral 2796   _Vcvv 3072    C_ wss 3431   |^|_ciin 4275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ral 2801  df-v 3074  df-in 3438  df-ss 3445  df-iin 4277
This theorem is referenced by:  polcon3N  33880
  Copyright terms: Public domain W3C validator