Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss1 Structured version   Unicode version

Theorem iinss1 4312
 Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem iinss1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssralv 3525 . . 3
2 vex 3083 . . . 4
3 eliin 4305 . . . 4
42, 3ax-mp 5 . . 3
5 eliin 4305 . . . 4
62, 5ax-mp 5 . . 3
71, 4, 63imtr4g 273 . 2
87ssrdv 3470 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wcel 1872  wral 2771  cvv 3080   wss 3436  ciin 4300 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-v 3082  df-in 3443  df-ss 3450  df-iin 4302 This theorem is referenced by:  polcon3N  33451
 Copyright terms: Public domain W3C validator