MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpreima Structured version   Unicode version

Theorem iinpreima 5994
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
iinpreima  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( `' F " B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem iinpreima
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpll 752 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  Fun  F )
2 cnvimass 5176 . . . . . . 7  |-  ( `' F " |^|_ x  e.  A  B )  C_ 
dom  F
32sseli 3437 . . . . . 6  |-  ( y  e.  ( `' F "
|^|_ x  e.  A  B )  ->  y  e.  dom  F )
43adantl 464 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  y  e.  dom  F )
5 fvex 5858 . . . . . 6  |-  ( F `
 y )  e. 
_V
6 fvimacnvi 5978 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
76adantlr 713 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
8 eliin 4276 . . . . . . 7  |-  ( ( F `  y )  e.  _V  ->  (
( F `  y
)  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  ( F `  y )  e.  B
) )
98biimpa 482 . . . . . 6  |-  ( ( ( F `  y
)  e.  _V  /\  ( F `  y )  e.  |^|_ x  e.  A  B )  ->  A. x  e.  A  ( F `  y )  e.  B
)
105, 7, 9sylancr 661 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  A. x  e.  A  ( F `  y )  e.  B
)
11 fvimacnv 5979 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  B  <->  y  e.  ( `' F " B ) ) )
1211ralbidv 2842 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( A. x  e.  A  ( F `  y )  e.  B  <->  A. x  e.  A  y  e.  ( `' F " B ) ) )
1312biimpa 482 . . . . 5  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  A. x  e.  A  ( F `  y )  e.  B
)  ->  A. x  e.  A  y  e.  ( `' F " B ) )
141, 4, 10, 13syl21anc 1229 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
15 vex 3061 . . . . 5  |-  y  e. 
_V
16 eliin 4276 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  <->  A. x  e.  A  y  e.  ( `' F " B ) ) )
1715, 16ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  ( `' F " B )  <->  A. x  e.  A  y  e.  ( `' F " B ) )
1814, 17sylibr 212 . . 3  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  y  e.  |^|_ x  e.  A  ( `' F " B ) )
19 simpll 752 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  Fun  F )
2016biimpd 207 . . . . . . . 8  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  ->  A. x  e.  A  y  e.  ( `' F " B ) ) )
2115, 20ax-mp 5 . . . . . . 7  |-  ( y  e.  |^|_ x  e.  A  ( `' F " B )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
2221adantl 464 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
23 fvimacnvi 5978 . . . . . . . 8  |-  ( ( Fun  F  /\  y  e.  ( `' F " B ) )  -> 
( F `  y
)  e.  B )
2423ex 432 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ( `' F " B )  ->  ( F `  y )  e.  B ) )
2524ralimdv 2813 . . . . . 6  |-  ( Fun 
F  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  A. x  e.  A  ( F `  y )  e.  B
) )
2619, 22, 25sylc 59 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  A. x  e.  A  ( F `  y )  e.  B
)
275, 8ax-mp 5 . . . . 5  |-  ( ( F `  y )  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  ( F `  y )  e.  B )
2826, 27sylibr 212 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
29 r19.2zb 3862 . . . . . . . . . 10  |-  ( A  =/=  (/)  <->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  E. x  e.  A  y  e.  ( `' F " B ) ) )
3029biimpi 194 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  E. x  e.  A  y  e.  ( `' F " B ) ) )
31 cnvimass 5176 . . . . . . . . . . 11  |-  ( `' F " B ) 
C_  dom  F
3231sseli 3437 . . . . . . . . . 10  |-  ( y  e.  ( `' F " B )  ->  y  e.  dom  F )
3332rexlimivw 2892 . . . . . . . . 9  |-  ( E. x  e.  A  y  e.  ( `' F " B )  ->  y  e.  dom  F )
3430, 33syl6 31 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  y  e.  dom  F ) )
3517, 34syl5bi 217 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( y  e.  |^|_ x  e.  A  ( `' F " B )  ->  y  e.  dom  F ) )
3635adantl 464 . . . . . 6  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  -> 
y  e.  dom  F
) )
3736imp 427 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  y  e.  dom  F )
38 fvimacnv 5979 . . . . 5  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  |^|_ x  e.  A  B  <->  y  e.  ( `' F " |^|_ x  e.  A  B )
) )
3919, 37, 38syl2anc 659 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  ( ( F `  y )  e.  |^|_ x  e.  A  B 
<->  y  e.  ( `' F " |^|_ x  e.  A  B )
) )
4028, 39mpbid 210 . . 3  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  y  e.  ( `' F " |^|_ x  e.  A  B )
)
4118, 40impbida 833 . 2  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  (
y  e.  ( `' F " |^|_ x  e.  A  B )  <->  y  e.  |^|_ x  e.  A  ( `' F " B ) ) )
4241eqrdv 2399 1  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( `' F " B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   _Vcvv 3058   (/)c0 3737   |^|_ciin 4271   `'ccnv 4821   dom cdm 4822   "cima 4825   Fun wfun 5562   ` cfv 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iin 4273  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-fv 5576
This theorem is referenced by:  intpreima  5995
  Copyright terms: Public domain W3C validator