MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinin1 Structured version   Unicode version

Theorem iinin1 4364
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4347 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
iinin1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iinin1
StepHypRef Expression
1 iinin2 4363 . 2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  |^|_ x  e.  A  C ) )
2 incom 3652 . . . 4  |-  ( C  i^i  B )  =  ( B  i^i  C
)
32a1i 11 . . 3  |-  ( x  e.  A  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
43iineq2i 4313 . 2  |-  |^|_ x  e.  A  ( C  i^i  B )  =  |^|_ x  e.  A  ( B  i^i  C )
5 incom 3652 . 2  |-  ( |^|_ x  e.  A  C  i^i  B )  =  ( B  i^i  |^|_ x  e.  A  C )
61, 4, 53eqtr4g 2486 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1867    =/= wne 2616    i^i cin 3432   (/)c0 3758   |^|_ciin 4294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-v 3080  df-dif 3436  df-in 3440  df-nul 3759  df-iin 4296
This theorem is referenced by:  firest  15309
  Copyright terms: Public domain W3C validator