Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Structured version   Unicode version

Theorem iineq2dv 4325
 Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1
Assertion
Ref Expression
iineq2dv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1754 . 2
2 iuneq2dv.1 . 2
31, 2iineq2d 4323 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437   wcel 1870  ciin 4303 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-ral 2787  df-iin 4305 This theorem is referenced by:  cntziinsn  16939  ptbasfi  20527  fclsval  20954  taylfval  23179  polfvalN  33178  dihglblem3N  34572  dihmeetlem2N  34576  saliincl  37733
 Copyright terms: Public domain W3C validator