Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12f Structured version   Visualization version   Unicode version

Theorem iineq12f 32472
 Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iineq12f.1
iineq12f.2
Assertion
Ref Expression
iineq12f

Proof of Theorem iineq12f
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2538 . . . . . 6
21ralimi 2796 . . . . 5
3 ralbi 2908 . . . . 5
42, 3syl 17 . . . 4
5 iineq12f.1 . . . . 5
6 iineq12f.2 . . . . 5
75, 6raleqf 2969 . . . 4
84, 7sylan9bbr 715 . . 3
98abbidv 2589 . 2
10 df-iin 4272 . 2
11 df-iin 4272 . 2
129, 10, 113eqtr4g 2530 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   wceq 1452   wcel 1904  cab 2457  wnfc 2599  wral 2756  ciin 4270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-iin 4272 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator