Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12f Structured version   Visualization version   Unicode version

Theorem iineq12f 32472
Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iineq12f.1  |-  F/_ x A
iineq12f.2  |-  F/_ x B
Assertion
Ref Expression
iineq12f  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  D )  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  D
)

Proof of Theorem iineq12f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2538 . . . . . 6  |-  ( C  =  D  ->  (
y  e.  C  <->  y  e.  D ) )
21ralimi 2796 . . . . 5  |-  ( A. x  e.  A  C  =  D  ->  A. x  e.  A  ( y  e.  C  <->  y  e.  D
) )
3 ralbi 2908 . . . . 5  |-  ( A. x  e.  A  (
y  e.  C  <->  y  e.  D )  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  A  y  e.  D ) )
42, 3syl 17 . . . 4  |-  ( A. x  e.  A  C  =  D  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  A  y  e.  D )
)
5 iineq12f.1 . . . . 5  |-  F/_ x A
6 iineq12f.2 . . . . 5  |-  F/_ x B
75, 6raleqf 2969 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  A  y  e.  D  <->  A. x  e.  B  y  e.  D ) )
84, 7sylan9bbr 715 . . 3  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  D )  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  B  y  e.  D ) )
98abbidv 2589 . 2  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  D )  ->  { y  |  A. x  e.  A  y  e.  C }  =  { y  |  A. x  e.  B  y  e.  D }
)
10 df-iin 4272 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
11 df-iin 4272 . 2  |-  |^|_ x  e.  B  D  =  { y  |  A. x  e.  B  y  e.  D }
129, 10, 113eqtr4g 2530 1  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  D )  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  D
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457   F/_wnfc 2599   A.wral 2756   |^|_ciin 4270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-iin 4272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator