MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif2 Structured version   Unicode version

Theorem iindif2 4365
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4349 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iindif2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iindif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 3892 . . . 4  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C ) ) )
2 eldif 3446 . . . . . 6  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
32bicomi 205 . . . . 5  |-  ( ( y  e.  B  /\  -.  y  e.  C
)  <->  y  e.  ( B  \  C ) )
43ralbii 2856 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  A. x  e.  A  y  e.  ( B  \  C ) )
5 ralnex 2871 . . . . . 6  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  E. x  e.  A  y  e.  C )
6 eliun 4301 . . . . . 6  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
75, 6xchbinxr 312 . . . . 5  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  y  e.  U_ x  e.  A  C )
87anbi2i 698 . . . 4  |-  ( ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C )
)
91, 4, 83bitr3g 290 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( B  \  C
)  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) ) )
10 vex 3084 . . . 4  |-  y  e. 
_V
11 eliin 4302 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) ) )
1210, 11ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) )
13 eldif 3446 . . 3  |-  ( y  e.  ( B  \  U_ x  e.  A  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) )
149, 12, 133bitr4g 291 . 2  |-  ( A  =/=  (/)  ->  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <-> 
y  e.  ( B 
\  U_ x  e.  A  C ) ) )
1514eqrdv 2419 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   _Vcvv 3081    \ cdif 3433   (/)c0 3761   U_ciun 4296   |^|_ciin 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-v 3083  df-dif 3439  df-nul 3762  df-iun 4298  df-iin 4299
This theorem is referenced by:  iinvdif  4368  iincld  20040  clsval2  20051  mretopd  20094  hauscmplem  20407  cmpfi  20409  sigapildsyslem  28978  saliincl  37986
  Copyright terms: Public domain W3C validator