MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif2 Structured version   Unicode version

Theorem iindif2 4227
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4211 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iindif2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iindif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 3763 . . . 4  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C ) ) )
2 eldif 3326 . . . . . 6  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
32bicomi 202 . . . . 5  |-  ( ( y  e.  B  /\  -.  y  e.  C
)  <->  y  e.  ( B  \  C ) )
43ralbii 2729 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  A. x  e.  A  y  e.  ( B  \  C ) )
5 ralnex 2715 . . . . . 6  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  E. x  e.  A  y  e.  C )
6 eliun 4163 . . . . . 6  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
75, 6xchbinxr 311 . . . . 5  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  y  e.  U_ x  e.  A  C )
87anbi2i 687 . . . 4  |-  ( ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C )
)
91, 4, 83bitr3g 287 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( B  \  C
)  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) ) )
10 vex 2965 . . . 4  |-  y  e. 
_V
11 eliin 4164 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) ) )
1210, 11ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) )
13 eldif 3326 . . 3  |-  ( y  e.  ( B  \  U_ x  e.  A  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) )
149, 12, 133bitr4g 288 . 2  |-  ( A  =/=  (/)  ->  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <-> 
y  e.  ( B 
\  U_ x  e.  A  C ) ) )
1514eqrdv 2431 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706   _Vcvv 2962    \ cdif 3313   (/)c0 3625   U_ciun 4159   |^|_ciin 4160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-v 2964  df-dif 3319  df-nul 3626  df-iun 4161  df-iin 4162
This theorem is referenced by:  iinvdif  4230  iincld  18485  clsval2  18496  mretopd  18538  hauscmplem  18851  cmpfi  18853
  Copyright terms: Public domain W3C validator