Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinconst Structured version   Unicode version

Theorem iinconst 4309
 Description: Indexed intersection of a constant class, i.e. where does not depend on . (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
iinconst
Distinct variable groups:   ,   ,

Proof of Theorem iinconst
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.3rzv 3892 . . 3
2 vex 3083 . . . 4
3 eliin 4305 . . . 4
42, 3ax-mp 5 . . 3
51, 4syl6rbbr 267 . 2
65eqrdv 2419 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wceq 1437   wcel 1872   wne 2614  wral 2771  cvv 3080  c0 3761  ciin 4300 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-v 3082  df-dif 3439  df-nul 3762  df-iin 4302 This theorem is referenced by:  iin0  4598  ptbasfi  20594
 Copyright terms: Public domain W3C validator