MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcl Structured version   Unicode version

Theorem iimulcl 20627
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iimulcl  |-  ( ( A  e.  ( 0 [,] 1 )  /\  B  e.  ( 0 [,] 1 ) )  ->  ( A  x.  B )  e.  ( 0 [,] 1 ) )

Proof of Theorem iimulcl
StepHypRef Expression
1 remulcl 9470 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
213ad2antr1 1153 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  ( A  x.  B )  e.  RR )
323ad2antl1 1150 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  ( A  x.  B )  e.  RR )
4 mulge0 9960 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
543adantr3 1149 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  0  <_  ( A  x.  B )
)
653adantl3 1146 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  0  <_  ( A  x.  B )
)
7 an6 1299 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <_  B )  /\  ( A  <_  1  /\  B  <_  1 ) ) )
8 1re 9488 . . . . . . . 8  |-  1  e.  RR
9 lemul12a 10290 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  1  e.  RR )  /\  (
( B  e.  RR  /\  0  <_  B )  /\  1  e.  RR ) )  ->  (
( A  <_  1  /\  B  <_  1 )  ->  ( A  x.  B )  <_  (
1  x.  1 ) ) )
108, 9mpanr2 684 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  1  e.  RR )  /\  ( B  e.  RR  /\  0  <_  B ) )  -> 
( ( A  <_ 
1  /\  B  <_  1 )  ->  ( A  x.  B )  <_  (
1  x.  1 ) ) )
118, 10mpanl2 681 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  <_  1  /\  B  <_  1 )  ->  ( A  x.  B )  <_  ( 1  x.  1 ) ) )
1211an4s 822 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  (
( A  <_  1  /\  B  <_  1 )  ->  ( A  x.  B )  <_  (
1  x.  1 ) ) )
13123impia 1185 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
)  /\  ( A  <_  1  /\  B  <_ 
1 ) )  -> 
( A  x.  B
)  <_  ( 1  x.  1 ) )
147, 13sylbi 195 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  ( A  x.  B )  <_  (
1  x.  1 ) )
15 1t1e1 10572 . . . 4  |-  ( 1  x.  1 )  =  1
1614, 15syl6breq 4431 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  ( A  x.  B )  <_  1
)
173, 6, 163jca 1168 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1 ) )  ->  ( ( A  x.  B )  e.  RR  /\  0  <_ 
( A  x.  B
)  /\  ( A  x.  B )  <_  1
) )
18 0re 9489 . . . 4  |-  0  e.  RR
1918, 8elicc2i 11464 . . 3  |-  ( A  e.  ( 0 [,] 1 )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  1
) )
2018, 8elicc2i 11464 . . 3  |-  ( B  e.  ( 0 [,] 1 )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1
) )
2119, 20anbi12i 697 . 2  |-  ( ( A  e.  ( 0 [,] 1 )  /\  B  e.  ( 0 [,] 1 ) )  <-> 
( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1
)  /\  ( B  e.  RR  /\  0  <_  B  /\  B  <_  1
) ) )
2218, 8elicc2i 11464 . 2  |-  ( ( A  x.  B )  e.  ( 0 [,] 1 )  <->  ( ( A  x.  B )  e.  RR  /\  0  <_ 
( A  x.  B
)  /\  ( A  x.  B )  <_  1
) )
2317, 21, 223imtr4i 266 1  |-  ( ( A  e.  ( 0 [,] 1 )  /\  B  e.  ( 0 [,] 1 ) )  ->  ( A  x.  B )  e.  ( 0 [,] 1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1758   class class class wbr 4392  (class class class)co 6192   RRcr 9384   0cc0 9385   1c1 9386    x. cmul 9390    <_ cle 9522   [,]cicc 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-icc 11410
This theorem is referenced by:  iimulcn  20628  iistmd  26468  xrge0iifhom  26503  xrge0pluscn  26506
  Copyright terms: Public domain W3C validator