Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenss Structured version   Unicode version

Theorem igenss 28862
Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1  |-  G  =  ( 1st `  R
)
igenval.2  |-  X  =  ran  G
Assertion
Ref Expression
igenss  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  S  C_  ( R  IdlGen  S ) )

Proof of Theorem igenss
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 ssintub 4146 . 2  |-  S  C_  |^|
{ j  e.  ( Idl `  R )  |  S  C_  j }
2 igenval.1 . . 3  |-  G  =  ( 1st `  R
)
3 igenval.2 . . 3  |-  X  =  ran  G
42, 3igenval 28861 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { j  e.  ( Idl `  R )  |  S  C_  j } )
51, 4syl5sseqr 3405 1  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  S  C_  ( R  IdlGen  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2719    C_ wss 3328   |^|cint 4128   ran crn 4841   ` cfv 5418  (class class class)co 6091   1stc1st 6575   RingOpscrngo 23862   Idlcidl 28807    IdlGen cigen 28859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fo 5424  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-grpo 23678  df-gid 23679  df-ablo 23769  df-rngo 23863  df-idl 28810  df-igen 28860
This theorem is referenced by:  igenval2  28866  isfldidl  28868  ispridlc  28870
  Copyright terms: Public domain W3C validator