MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval3 Structured version   Unicode version

Theorem ig1pval3 22759
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1pval.p  |-  P  =  (Poly1 `  R )
ig1pval.g  |-  G  =  (idlGen1p `
 R )
ig1pval3.z  |-  .0.  =  ( 0g `  P )
ig1pval3.u  |-  U  =  (LIdeal `  P )
ig1pval3.d  |-  D  =  ( deg1  `  R )
ig1pval3.m  |-  M  =  (Monic1p `  R )
Assertion
Ref Expression
ig1pval3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( G `
 I )  e.  I  /\  ( G `
 I )  e.  M  /\  ( D `
 ( G `  I ) )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )

Proof of Theorem ig1pval3
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ig1pval.p . . . . . 6  |-  P  =  (Poly1 `  R )
2 ig1pval.g . . . . . 6  |-  G  =  (idlGen1p `
 R )
3 ig1pval3.z . . . . . 6  |-  .0.  =  ( 0g `  P )
4 ig1pval3.u . . . . . 6  |-  U  =  (LIdeal `  P )
5 ig1pval3.d . . . . . 6  |-  D  =  ( deg1  `  R )
6 ig1pval3.m . . . . . 6  |-  M  =  (Monic1p `  R )
71, 2, 3, 4, 5, 6ig1pval 22757 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U )  ->  ( G `  I )  =  if ( I  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
873adant3 1017 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( G `  I )  =  if ( I  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
9 simp3 999 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  =/=  {  .0.  } )
109neneqd 2605 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  -.  I  =  {  .0.  } )
1110iffalsed 3895 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  if ( I  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  =  ( iota_ g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
128, 11eqtrd 2443 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( G `  I )  =  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
131, 4, 3, 6, 5ig1peu 22756 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E! g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
14 riotacl2 6209 . . . 4  |-  ( E! g  e.  ( I  i^i  M ) ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  -> 
( iota_ g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  e.  { g  e.  ( I  i^i  M
)  |  ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) } )
1513, 14syl 17 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( iota_ g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  e.  { g  e.  ( I  i^i 
M )  |  ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) } )
1612, 15eqeltrd 2490 . 2  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( G `  I )  e.  {
g  e.  ( I  i^i  M )  |  ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) } )
17 elin 3625 . . . 4  |-  ( ( G `  I )  e.  ( I  i^i 
M )  <->  ( ( G `  I )  e.  I  /\  ( G `  I )  e.  M ) )
1817anbi1i 693 . . 3  |-  ( ( ( G `  I
)  e.  ( I  i^i  M )  /\  ( D `  ( G `
 I ) )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )  <-> 
( ( ( G `
 I )  e.  I  /\  ( G `
 I )  e.  M )  /\  ( D `  ( G `  I ) )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
19 fveq2 5805 . . . . 5  |-  ( g  =  ( G `  I )  ->  ( D `  g )  =  ( D `  ( G `  I ) ) )
2019eqeq1d 2404 . . . 4  |-  ( g  =  ( G `  I )  ->  (
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <->  ( D `  ( G `  I
) )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
2120elrab 3206 . . 3  |-  ( ( G `  I )  e.  { g  e.  ( I  i^i  M
)  |  ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) }  <->  ( ( G `  I )  e.  ( I  i^i  M
)  /\  ( D `  ( G `  I
) )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
22 df-3an 976 . . 3  |-  ( ( ( G `  I
)  e.  I  /\  ( G `  I )  e.  M  /\  ( D `  ( G `  I ) )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  <->  ( (
( G `  I
)  e.  I  /\  ( G `  I )  e.  M )  /\  ( D `  ( G `
 I ) )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) ) )
2318, 21, 223bitr4i 277 . 2  |-  ( ( G `  I )  e.  { g  e.  ( I  i^i  M
)  |  ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) }  <->  ( ( G `  I )  e.  I  /\  ( G `  I )  e.  M  /\  ( D `  ( G `  I ) )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
2416, 23sylib 196 1  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( G `
 I )  e.  I  /\  ( G `
 I )  e.  M  /\  ( D `
 ( G `  I ) )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   E!wreu 2755   {crab 2757    \ cdif 3410    i^i cin 3412   ifcif 3884   {csn 3971   `'ccnv 4941   "cima 4945   ` cfv 5525   iota_crio 6195   supcsup 7854   RRcr 9441    < clt 9578   0gc0g 14946   DivRingcdr 17608  LIdealclidl 18028  Poly1cpl1 18428   deg1 cdg1 22636  Monic1pcmn1 22710  idlGen1pcig1p 22714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520  ax-addf 9521  ax-mulf 9522
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-of 6477  df-ofr 6478  df-om 6639  df-1st 6738  df-2nd 6739  df-supp 6857  df-tpos 6912  df-recs 6999  df-rdg 7033  df-1o 7087  df-2o 7088  df-oadd 7091  df-er 7268  df-map 7379  df-pm 7380  df-ixp 7428  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-fsupp 7784  df-sup 7855  df-oi 7889  df-card 8272  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-nn 10497  df-2 10555  df-3 10556  df-4 10557  df-5 10558  df-6 10559  df-7 10560  df-8 10561  df-9 10562  df-10 10563  df-n0 10757  df-z 10826  df-dec 10940  df-uz 11046  df-fz 11644  df-fzo 11768  df-seq 12062  df-hash 12360  df-struct 14735  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-mulr 14815  df-starv 14816  df-sca 14817  df-vsca 14818  df-ip 14819  df-tset 14820  df-ple 14821  df-ds 14823  df-unif 14824  df-0g 14948  df-gsum 14949  df-mre 15092  df-mrc 15093  df-acs 15095  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-mhm 16182  df-submnd 16183  df-grp 16273  df-minusg 16274  df-sbg 16275  df-mulg 16276  df-subg 16414  df-ghm 16481  df-cntz 16571  df-cmn 17016  df-abl 17017  df-mgp 17354  df-ur 17366  df-ring 17412  df-cring 17413  df-oppr 17484  df-dvdsr 17502  df-unit 17503  df-invr 17533  df-drng 17610  df-subrg 17639  df-lmod 17726  df-lss 17791  df-sra 18030  df-rgmod 18031  df-lidl 18032  df-rlreg 18143  df-ascl 18175  df-psr 18217  df-mvr 18218  df-mpl 18219  df-opsr 18221  df-psr1 18431  df-vr1 18432  df-ply1 18433  df-coe1 18434  df-cnfld 18633  df-mdeg 22637  df-deg1 22638  df-mon1 22715  df-uc1p 22716  df-ig1p 22719
This theorem is referenced by:  ig1pcl  22760  ig1pdvds  22761
  Copyright terms: Public domain W3C validator