MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Unicode version

Theorem ig1peu 22997
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1peu.p  |-  P  =  (Poly1 `  R )
ig1peu.u  |-  U  =  (LIdeal `  P )
ig1peu.z  |-  .0.  =  ( 0g `  P )
ig1peu.m  |-  M  =  (Monic1p `  R )
ig1peu.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
ig1peu  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E! g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
Distinct variable groups:    D, g    g, I    g, M    P, g    R, g    U, g    .0. , g

Proof of Theorem ig1peu
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 eqid 2429 . . . . . . . . . . 11  |-  ( Base `  P )  =  (
Base `  P )
2 ig1peu.u . . . . . . . . . . 11  |-  U  =  (LIdeal `  P )
31, 2lidlss 18368 . . . . . . . . . 10  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
433ad2ant2 1027 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  C_  ( Base `  P ) )
54ssdifd 3607 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  C_  ( ( Base `  P
)  \  {  .0.  } ) )
6 imass2 5224 . . . . . . . 8  |-  ( ( I  \  {  .0.  } )  C_  ( ( Base `  P )  \  {  .0.  } )  -> 
( D " (
I  \  {  .0.  } ) )  C_  ( D " ( ( Base `  P )  \  {  .0.  } ) ) )
75, 6syl 17 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  ( D " ( (
Base `  P )  \  {  .0.  } ) ) )
8 drngring 17917 . . . . . . . . 9  |-  ( R  e.  DivRing  ->  R  e.  Ring )
983ad2ant1 1026 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  R  e.  Ring )
10 ig1peu.d . . . . . . . . 9  |-  D  =  ( deg1  `  R )
11 ig1peu.p . . . . . . . . 9  |-  P  =  (Poly1 `  R )
12 ig1peu.z . . . . . . . . 9  |-  .0.  =  ( 0g `  P )
1310, 11, 12, 1deg1n0ima 22915 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( D
" ( ( Base `  P )  \  {  .0.  } ) )  C_  NN0 )
149, 13syl 17 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( ( Base `  P
)  \  {  .0.  } ) )  C_  NN0 )
157, 14sstrd 3480 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  NN0 )
16 nn0uz 11193 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
1715, 16syl6sseq 3516 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  ( ZZ>= `  0 )
)
1811ply1ring 18776 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  P  e. 
Ring )
199, 18syl 17 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  P  e.  Ring )
20 simp2 1006 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  e.  U
)
212, 12lidl0cl 18370 . . . . . . . . 9  |-  ( ( P  e.  Ring  /\  I  e.  U )  ->  .0.  e.  I )
2219, 20, 21syl2anc 665 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  .0.  e.  I
)
2322snssd 4148 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  {  .0.  }  C_  I )
24 simp3 1007 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  =/=  {  .0.  } )
2524necomd 2702 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  {  .0.  }  =/=  I )
26 pssdifn0 3861 . . . . . . 7  |-  ( ( {  .0.  }  C_  I  /\  {  .0.  }  =/=  I )  ->  (
I  \  {  .0.  } )  =/=  (/) )
2723, 25, 26syl2anc 665 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  =/=  (/) )
2810, 11, 1deg1xrf 22907 . . . . . . . . . 10  |-  D :
( Base `  P ) --> RR*
29 ffn 5746 . . . . . . . . . 10  |-  ( D : ( Base `  P
) --> RR*  ->  D  Fn  ( Base `  P )
)
3028, 29ax-mp 5 . . . . . . . . 9  |-  D  Fn  ( Base `  P )
3130a1i 11 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  D  Fn  ( Base `  P ) )
324ssdifssd 3609 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  C_  ( Base `  P )
)
33 fnimaeq0 5715 . . . . . . . 8  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P ) )  -> 
( ( D "
( I  \  {  .0.  } ) )  =  (/) 
<->  ( I  \  {  .0.  } )  =  (/) ) )
3431, 32, 33syl2anc 665 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( D
" ( I  \  {  .0.  } ) )  =  (/)  <->  ( I  \  {  .0.  } )  =  (/) ) )
3534necon3bid 2689 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( D
" ( I  \  {  .0.  } ) )  =/=  (/)  <->  ( I  \  {  .0.  } )  =/=  (/) ) )
3627, 35mpbird 235 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  =/=  (/) )
37 infmssuzclOLD 11247 . . . . 5  |-  ( ( ( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 )  /\  ( D " ( I 
\  {  .0.  }
) )  =/=  (/) )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D "
( I  \  {  .0.  } ) ) )
3817, 36, 37syl2anc 665 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D
" ( I  \  {  .0.  } ) ) )
39 fvelimab 5937 . . . . 5  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P ) )  -> 
( sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  e.  ( D " (
I  \  {  .0.  } ) )  <->  E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4031, 32, 39syl2anc 665 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D " (
I  \  {  .0.  } ) )  <->  E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4138, 40mpbid 213 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E. h  e.  ( I  \  {  .0.  } ) ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
4219adantr 466 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  P  e.  Ring )
43 simpl2 1009 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  I  e.  U )
449adantr 466 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  R  e.  Ring )
45 eqid 2429 . . . . . . . . . . 11  |-  (algSc `  P )  =  (algSc `  P )
46 eqid 2429 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4711, 45, 46, 1ply1sclf 18813 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
4844, 47syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
49 simpl1 1008 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  R  e.  DivRing )
5032sselda 3470 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  ( Base `  P
) )
51 eldifsni 4129 . . . . . . . . . . . . . 14  |-  ( h  e.  ( I  \  {  .0.  } )  ->  h  =/=  .0.  )
5251adantl 467 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  =/=  .0.  )
53 eqid 2429 . . . . . . . . . . . . . 14  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
5411, 1, 12, 53drnguc1p 22996 . . . . . . . . . . . . 13  |-  ( ( R  e.  DivRing  /\  h  e.  ( Base `  P
)  /\  h  =/=  .0.  )  ->  h  e.  (Unic1p `  R ) )
5549, 50, 52, 54syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  (Unic1p `  R ) )
56 eqid 2429 . . . . . . . . . . . . 13  |-  (Unit `  R )  =  (Unit `  R )
5710, 56, 53uc1pldg 22974 . . . . . . . . . . . 12  |-  ( h  e.  (Unic1p `  R )  -> 
( (coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )
5855, 57syl 17 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
(coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )
59 eqid 2429 . . . . . . . . . . . 12  |-  ( invr `  R )  =  (
invr `  R )
6056, 59unitinvcl 17837 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
(coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )  -> 
( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) )  e.  (Unit `  R ) )
6144, 58, 60syl2anc 665 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (Unit `  R ) )
6246, 56unitcl 17822 . . . . . . . . . 10  |-  ( ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) )  e.  (Unit `  R )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (
Base `  R )
)
6361, 62syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (
Base `  R )
)
6448, 63ffvelrnd 6038 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) )  e.  ( Base `  P
) )
65 eldifi 3593 . . . . . . . . 9  |-  ( h  e.  ( I  \  {  .0.  } )  ->  h  e.  I )
6665adantl 467 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  I )
67 eqid 2429 . . . . . . . . 9  |-  ( .r
`  P )  =  ( .r `  P
)
682, 1, 67lidlmcl 18376 . . . . . . . 8  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) )  e.  ( Base `  P
)  /\  h  e.  I ) )  -> 
( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  I
)
6942, 43, 64, 66, 68syl22anc 1265 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  I
)
70 ig1peu.m . . . . . . . . 9  |-  M  =  (Monic1p `  R )
7153, 70, 11, 67, 45, 10, 59uc1pmon1p 22977 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  h  e.  (Unic1p `  R ) )  ->  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  M
)
7244, 55, 71syl2anc 665 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  M
)
7369, 72elind 3656 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  ( I  i^i  M ) )
74 eqid 2429 . . . . . . . . . 10  |-  (RLReg `  R )  =  (RLReg `  R )
7574, 56unitrrg 18452 . . . . . . . . 9  |-  ( R  e.  Ring  ->  (Unit `  R )  C_  (RLReg `  R ) )
7644, 75syl 17 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (Unit `  R )  C_  (RLReg `  R ) )
7776, 61sseldd 3471 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (RLReg `  R ) )
7810, 11, 74, 1, 67, 45deg1mul3 22941 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (RLReg `  R )  /\  h  e.  ( Base `  P
) )  ->  ( D `  ( (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )
7944, 77, 50, 78syl3anc 1264 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  ( D `  ( (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )
80 fveq2 5881 . . . . . . . 8  |-  ( g  =  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  ->  ( D `  g )  =  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) ) )
8180eqeq1d 2431 . . . . . . 7  |-  ( g  =  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  ->  (
( D `  g
)  =  ( D `
 h )  <->  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) )  =  ( D `  h
) ) )
8281rspcev 3188 . . . . . 6  |-  ( ( ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  ( I  i^i  M )  /\  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h ) )
8373, 79, 82syl2anc 665 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h ) )
84 eqeq2 2444 . . . . . 6  |-  ( ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  -> 
( ( D `  g )  =  ( D `  h )  <-> 
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
8584rexbidv 2946 . . . . 5  |-  ( ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  -> 
( E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h )  <->  E. g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
8683, 85syl5ibcom 223 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( D `  h
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  E. g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
8786rexlimdva 2924 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
8841, 87mpd 15 . 2  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E. g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
89 eqid 2429 . . . . . . 7  |-  ( -g `  P )  =  (
-g `  P )
909ad2antrr 730 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  R  e.  Ring )
91 inss2 3689 . . . . . . . . 9  |-  ( I  i^i  M )  C_  M
92 simprl 762 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  ( I  i^i  M
) )
9391, 92sseldi 3468 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  M )
9493adantr 466 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  g  e.  M )
95 simprl 762 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
96 simprr 764 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  ( I  i^i  M
) )
9791, 96sseldi 3468 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  M )
9897adantr 466 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  h  e.  M )
99 simprr 764 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
10010, 70, 11, 89, 90, 94, 95, 98, 99deg1submon1p 22978 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  ( g
( -g `  P ) h ) )  <  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
101100ex 435 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
10217ad2antrr 730 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 ) )
10330a1i 11 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  ->  D  Fn  ( Base `  P ) )
10432ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( I  \  {  .0.  } )  C_  ( Base `  P ) )
10519adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  P  e.  Ring )
106 simpl2 1009 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  I  e.  U )
107 inss1 3688 . . . . . . . . . . . . . 14  |-  ( I  i^i  M )  C_  I
108107, 92sseldi 3468 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  I )
109107, 96sseldi 3468 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  I )
1102, 89lidlsubcl 18374 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( g  e.  I  /\  h  e.  I ) )  -> 
( g ( -g `  P ) h )  e.  I )
111105, 106, 108, 109, 110syl22anc 1265 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
g ( -g `  P
) h )  e.  I )
112111adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  e.  I )
113 simpr 462 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  =/=  .0.  )
114 eldifsn 4128 . . . . . . . . . . 11  |-  ( ( g ( -g `  P
) h )  e.  ( I  \  {  .0.  } )  <->  ( (
g ( -g `  P
) h )  e.  I  /\  ( g ( -g `  P
) h )  =/= 
.0.  ) )
115112, 113, 114sylanbrc 668 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  e.  ( I  \  {  .0.  } ) )
116 fnfvima 6158 . . . . . . . . . 10  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P )  /\  (
g ( -g `  P
) h )  e.  ( I  \  {  .0.  } ) )  -> 
( D `  (
g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )
117103, 104, 115, 116syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( D `  (
g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )
118 infmssuzleOLD 11246 . . . . . . . . 9  |-  ( ( ( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 )  /\  ( D `  ( g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) )
119102, 117, 118syl2anc 665 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) )
120119ex 435 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =/=  .0.  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) ) )
121 imassrn 5199 . . . . . . . . . . 11  |-  ( D
" ( I  \  {  .0.  } ) ) 
C_  ran  D
122 frn 5752 . . . . . . . . . . . 12  |-  ( D : ( Base `  P
) --> RR*  ->  ran  D  C_  RR* )
12328, 122ax-mp 5 . . . . . . . . . . 11  |-  ran  D  C_ 
RR*
124121, 123sstri 3479 . . . . . . . . . 10  |-  ( D
" ( I  \  {  .0.  } ) ) 
C_  RR*
125124, 38sseldi 3468 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR* )
126125adantr 466 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR* )
127 ringgrp 17720 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  P  e. 
Grp )
12819, 127syl 17 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  P  e.  Grp )
129128adantr 466 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  P  e.  Grp )
130107, 4syl5ss 3481 . . . . . . . . . . . 12  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  i^i 
M )  C_  ( Base `  P ) )
131130adantr 466 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
I  i^i  M )  C_  ( Base `  P
) )
132131, 92sseldd 3471 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  ( Base `  P
) )
133131, 96sseldd 3471 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  ( Base `  P
) )
1341, 89grpsubcl 16685 . . . . . . . . . 10  |-  ( ( P  e.  Grp  /\  g  e.  ( Base `  P )  /\  h  e.  ( Base `  P
) )  ->  (
g ( -g `  P
) h )  e.  ( Base `  P
) )
135129, 132, 133, 134syl3anc 1264 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
g ( -g `  P
) h )  e.  ( Base `  P
) )
13610, 11, 1deg1xrcl 22908 . . . . . . . . 9  |-  ( ( g ( -g `  P
) h )  e.  ( Base `  P
)  ->  ( D `  ( g ( -g `  P ) h ) )  e.  RR* )
137135, 136syl 17 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  ( D `  ( g
( -g `  P ) h ) )  e. 
RR* )
138 xrlenlt 9698 . . . . . . . 8  |-  ( ( sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR*  /\  ( D `  ( g
( -g `  P ) h ) )  e. 
RR* )  ->  ( sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) )  <->  -.  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
139126, 137, 138syl2anc 665 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  ( sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) )  <->  -.  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
140120, 139sylibd 217 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =/=  .0.  ->  -.  ( D `  ( g ( -g `  P
) h ) )  <  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
141140necon4ad 2651 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( D `  (
g ( -g `  P
) h ) )  <  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  ( g
( -g `  P ) h )  =  .0.  ) )
142101, 141syld 45 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  ( g
( -g `  P ) h )  =  .0.  ) )
1431, 12, 89grpsubeq0 16691 . . . . 5  |-  ( ( P  e.  Grp  /\  g  e.  ( Base `  P )  /\  h  e.  ( Base `  P
) )  ->  (
( g ( -g `  P ) h )  =  .0.  <->  g  =  h ) )
144129, 132, 133, 143syl3anc 1264 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =  .0.  <->  g  =  h ) )
145142, 144sylibd 217 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) )
146145ralrimivva 2853 . 2  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  A. g  e.  ( I  i^i  M ) A. h  e.  ( I  i^i  M ) ( ( ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) )
147 fveq2 5881 . . . 4  |-  ( g  =  h  ->  ( D `  g )  =  ( D `  h ) )
148147eqeq1d 2431 . . 3  |-  ( g  =  h  ->  (
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <->  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
149148reu4 3271 . 2  |-  ( E! g  e.  ( I  i^i  M ) ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  <->  ( E. g  e.  ( I  i^i  M ) ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  A. g  e.  ( I  i^i  M
) A. h  e.  ( I  i^i  M
) ( ( ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) ) )
15088, 146, 149sylanbrc 668 1  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E! g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   E!wreu 2784    \ cdif 3439    i^i cin 3441    C_ wss 3442   (/)c0 3767   {csn 4002   class class class wbr 4426   `'ccnv 4853   ran crn 4855   "cima 4857    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   supcsup 7960   RRcr 9537   0cc0 9538   RR*cxr 9673    < clt 9674    <_ cle 9675   NN0cn0 10869   ZZ>=cuz 11159   Basecbs 15084   .rcmulr 15153   0gc0g 15297   Grpcgrp 16620   -gcsg 16622   Ringcrg 17715  Unitcui 17802   invrcinvr 17834   DivRingcdr 17910  LIdealclidl 18328  RLRegcrlreg 18438  algSccascl 18470  Poly1cpl1 18705  coe1cco1 18706   deg1 cdg1 22880  Monic1pcmn1 22951  Unic1pcuc1p 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-sup 7962  df-oi 8025  df-card 8372  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11783  df-fzo 11914  df-seq 12211  df-hash 12513  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-0g 15299  df-gsum 15300  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-ghm 16832  df-cntz 16922  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-cring 17718  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-drng 17912  df-subrg 17941  df-lmod 18028  df-lss 18091  df-sra 18330  df-rgmod 18331  df-lidl 18332  df-rlreg 18442  df-ascl 18473  df-psr 18515  df-mvr 18516  df-mpl 18517  df-opsr 18519  df-psr1 18708  df-vr1 18709  df-ply1 18710  df-coe1 18711  df-cnfld 18906  df-mdeg 22881  df-deg1 22882  df-mon1 22956  df-uc1p 22957
This theorem is referenced by:  ig1pval3  23000
  Copyright terms: Public domain W3C validator