MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Unicode version

Theorem ig1pdvds 22662
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1pval.p  |-  P  =  (Poly1 `  R )
ig1pval.g  |-  G  =  (idlGen1p `
 R )
ig1pcl.u  |-  U  =  (LIdeal `  P )
ig1pdvds.d  |-  .||  =  (
||r `  P )
Assertion
Ref Expression
ig1pdvds  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  ( G `  I )  .|| 
X )

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 17516 . . . . . . 7  |-  ( R  e.  DivRing  ->  R  e.  Ring )
2 ig1pval.p . . . . . . . 8  |-  P  =  (Poly1 `  R )
32ply1ring 18402 . . . . . . 7  |-  ( R  e.  Ring  ->  P  e. 
Ring )
41, 3syl 16 . . . . . 6  |-  ( R  e.  DivRing  ->  P  e.  Ring )
543ad2ant1 1015 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  P  e.  Ring )
6 eqid 2382 . . . . . . . 8  |-  ( Base `  P )  =  (
Base `  P )
7 ig1pcl.u . . . . . . . 8  |-  U  =  (LIdeal `  P )
86, 7lidlss 17969 . . . . . . 7  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
983ad2ant2 1016 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  I  C_  ( Base `  P
) )
10 ig1pval.g . . . . . . . 8  |-  G  =  (idlGen1p `
 R )
112, 10, 7ig1pcl 22661 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U )  ->  ( G `  I )  e.  I )
12113adant3 1014 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  ( G `  I )  e.  I )
139, 12sseldd 3418 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  ( G `  I )  e.  ( Base `  P
) )
14 ig1pdvds.d . . . . . 6  |-  .||  =  (
||r `  P )
15 eqid 2382 . . . . . 6  |-  ( 0g
`  P )  =  ( 0g `  P
)
166, 14, 15dvdsr01 17417 . . . . 5  |-  ( ( P  e.  Ring  /\  ( G `  I )  e.  ( Base `  P
) )  ->  ( G `  I )  .||  ( 0g `  P
) )
175, 13, 16syl2anc 659 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  ( G `  I )  .||  ( 0g `  P
) )
1817adantr 463 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =  {
( 0g `  P
) } )  -> 
( G `  I
)  .||  ( 0g `  P ) )
19 eleq2 2455 . . . . . 6  |-  ( I  =  { ( 0g
`  P ) }  ->  ( X  e.  I  <->  X  e.  { ( 0g `  P ) } ) )
2019biimpac 484 . . . . 5  |-  ( ( X  e.  I  /\  I  =  { ( 0g `  P ) } )  ->  X  e.  { ( 0g `  P
) } )
21203ad2antl3 1158 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =  {
( 0g `  P
) } )  ->  X  e.  { ( 0g `  P ) } )
22 elsni 3969 . . . 4  |-  ( X  e.  { ( 0g
`  P ) }  ->  X  =  ( 0g `  P ) )
2321, 22syl 16 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =  {
( 0g `  P
) } )  ->  X  =  ( 0g `  P ) )
2418, 23breqtrrd 4393 . 2  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =  {
( 0g `  P
) } )  -> 
( G `  I
)  .||  X )
25 simpl1 997 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  R  e.  DivRing )
2625, 1syl 16 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  R  e.  Ring )
27 simpl2 998 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  I  e.  U )
2827, 8syl 16 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  I  C_  ( Base `  P
) )
29 simpl3 999 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  X  e.  I )
3028, 29sseldd 3418 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  X  e.  ( Base `  P
) )
31 simpr 459 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  I  =/=  { ( 0g `  P ) } )
32 eqid 2382 . . . . . . . . . . 11  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
33 eqid 2382 . . . . . . . . . . 11  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
342, 10, 15, 7, 32, 33ig1pval3 22660 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{ ( 0g `  P ) } )  ->  ( ( G `
 I )  e.  I  /\  ( G `
 I )  e.  (Monic1p `  R )  /\  ( ( deg1  `  R ) `  ( G `  I
) )  =  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  ) ) )
3525, 27, 31, 34syl3anc 1226 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( G `  I
)  e.  I  /\  ( G `  I )  e.  (Monic1p `  R )  /\  ( ( deg1  `  R ) `  ( G `  I
) )  =  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  ) ) )
3635simp2d 1007 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( G `  I )  e.  (Monic1p `  R ) )
37 eqid 2382 . . . . . . . . 9  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
3837, 33mon1puc1p 22636 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( G `  I )  e.  (Monic1p `  R ) )  ->  ( G `  I )  e.  (Unic1p `  R ) )
3926, 36, 38syl2anc 659 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( G `  I )  e.  (Unic1p `  R ) )
40 eqid 2382 . . . . . . . 8  |-  (rem1p `  R
)  =  (rem1p `  R
)
4140, 2, 6, 37, 32r1pdeglt 22644 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  P
)  /\  ( G `  I )  e.  (Unic1p `  R ) )  -> 
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) )  <  ( ( deg1  `  R
) `  ( G `  I ) ) )
4226, 30, 39, 41syl3anc 1226 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  <  (
( deg1  `
 R ) `  ( G `  I ) ) )
4335simp3d 1008 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) `  ( G `  I ) )  =  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  ) )
4442, 43breqtrd 4391 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  <  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  ) )
4532, 2, 6deg1xrf 22566 . . . . . . 7  |-  ( deg1  `  R
) : ( Base `  P ) --> RR*
4635simp1d 1006 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( G `  I )  e.  I )
4728, 46sseldd 3418 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( G `  I )  e.  ( Base `  P
) )
48 eqid 2382 . . . . . . . . . . 11  |-  (quot1p `  R
)  =  (quot1p `  R
)
49 eqid 2382 . . . . . . . . . . 11  |-  ( .r
`  P )  =  ( .r `  P
)
50 eqid 2382 . . . . . . . . . . 11  |-  ( -g `  P )  =  (
-g `  P )
5140, 2, 6, 48, 49, 50r1pval 22642 . . . . . . . . . 10  |-  ( ( X  e.  ( Base `  P )  /\  ( G `  I )  e.  ( Base `  P
) )  ->  ( X (rem1p `  R ) ( G `  I ) )  =  ( X ( -g `  P
) ( ( X (quot1p `  R ) ( G `  I ) ) ( .r `  P ) ( G `
 I ) ) ) )
5230, 47, 51syl2anc 659 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X (rem1p `  R ) ( G `  I ) )  =  ( X ( -g `  P
) ( ( X (quot1p `  R ) ( G `  I ) ) ( .r `  P ) ( G `
 I ) ) ) )
5326, 3syl 16 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  P  e.  Ring )
5448, 2, 6, 37q1pcl 22641 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  P
)  /\  ( G `  I )  e.  (Unic1p `  R ) )  -> 
( X (quot1p `  R
) ( G `  I ) )  e.  ( Base `  P
) )
5526, 30, 39, 54syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X (quot1p `  R ) ( G `  I ) )  e.  ( Base `  P ) )
567, 6, 49lidlmcl 17978 . . . . . . . . . . 11  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( ( X (quot1p `  R ) ( G `  I ) )  e.  ( Base `  P )  /\  ( G `  I )  e.  I ) )  -> 
( ( X (quot1p `  R ) ( G `
 I ) ) ( .r `  P
) ( G `  I ) )  e.  I )
5753, 27, 55, 46, 56syl22anc 1227 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( X (quot1p `  R
) ( G `  I ) ) ( .r `  P ) ( G `  I
) )  e.  I
)
587, 50lidlsubcl 17976 . . . . . . . . . 10  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( X  e.  I  /\  ( ( X (quot1p `  R ) ( G `  I ) ) ( .r `  P ) ( G `
 I ) )  e.  I ) )  ->  ( X (
-g `  P )
( ( X (quot1p `  R ) ( G `
 I ) ) ( .r `  P
) ( G `  I ) ) )  e.  I )
5953, 27, 29, 57, 58syl22anc 1227 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X ( -g `  P
) ( ( X (quot1p `  R ) ( G `  I ) ) ( .r `  P ) ( G `
 I ) ) )  e.  I )
6052, 59eqeltrd 2470 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X (rem1p `  R ) ( G `  I ) )  e.  I )
6128, 60sseldd 3418 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X (rem1p `  R ) ( G `  I ) )  e.  ( Base `  P ) )
62 ffvelrn 5931 . . . . . . 7  |-  ( ( ( deg1  `  R ) : ( Base `  P
) --> RR*  /\  ( X (rem1p `  R ) ( G `  I ) )  e.  ( Base `  P ) )  -> 
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) )  e.  RR* )
6345, 61, 62sylancr 661 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  e.  RR* )
6428ssdifd 3554 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
I  \  { ( 0g `  P ) } )  C_  ( ( Base `  P )  \  { ( 0g `  P ) } ) )
65 imass2 5284 . . . . . . . . . 10  |-  ( ( I  \  { ( 0g `  P ) } )  C_  (
( Base `  P )  \  { ( 0g `  P ) } )  ->  ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) )  C_  (
( deg1  `
 R ) "
( ( Base `  P
)  \  { ( 0g `  P ) } ) ) )
6664, 65syl 16 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( I  \  {
( 0g `  P
) } ) ) 
C_  ( ( deg1  `  R
) " ( (
Base `  P )  \  { ( 0g `  P ) } ) ) )
6732, 2, 15, 6deg1n0ima 22574 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( ( deg1  `  R ) " (
( Base `  P )  \  { ( 0g `  P ) } ) )  C_  NN0 )
6826, 67syl 16 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( ( Base `  P
)  \  { ( 0g `  P ) } ) )  C_  NN0 )
69 nn0uz 11035 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
7068, 69syl6sseq 3463 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( ( Base `  P
)  \  { ( 0g `  P ) } ) )  C_  ( ZZ>=
`  0 ) )
7166, 70sstrd 3427 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( I  \  {
( 0g `  P
) } ) ) 
C_  ( ZZ>= `  0
) )
72 uzssz 11020 . . . . . . . . 9  |-  ( ZZ>= ` 
0 )  C_  ZZ
73 zssre 10788 . . . . . . . . . 10  |-  ZZ  C_  RR
74 ressxr 9548 . . . . . . . . . 10  |-  RR  C_  RR*
7573, 74sstri 3426 . . . . . . . . 9  |-  ZZ  C_  RR*
7672, 75sstri 3426 . . . . . . . 8  |-  ( ZZ>= ` 
0 )  C_  RR*
7771, 76syl6ss 3429 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( I  \  {
( 0g `  P
) } ) ) 
C_  RR* )
787, 15lidl0cl 17972 . . . . . . . . . . . 12  |-  ( ( P  e.  Ring  /\  I  e.  U )  ->  ( 0g `  P )  e.  I )
7953, 27, 78syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( 0g `  P )  e.  I )
8079snssd 4089 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  { ( 0g `  P ) }  C_  I )
8131necomd 2653 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  { ( 0g `  P ) }  =/=  I )
82 pssdifn0 3804 . . . . . . . . . 10  |-  ( ( { ( 0g `  P ) }  C_  I  /\  { ( 0g
`  P ) }  =/=  I )  -> 
( I  \  {
( 0g `  P
) } )  =/=  (/) )
8380, 81, 82syl2anc 659 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
I  \  { ( 0g `  P ) } )  =/=  (/) )
84 ffn 5639 . . . . . . . . . . . 12  |-  ( ( deg1  `  R ) : (
Base `  P ) --> RR* 
->  ( deg1  `  R )  Fn  ( Base `  P
) )
8545, 84ax-mp 5 . . . . . . . . . . 11  |-  ( deg1  `  R
)  Fn  ( Base `  P )
8628ssdifssd 3556 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
I  \  { ( 0g `  P ) } )  C_  ( Base `  P ) )
87 fnimaeq0 5610 . . . . . . . . . . 11  |-  ( ( ( deg1  `  R )  Fn  ( Base `  P
)  /\  ( I  \  { ( 0g `  P ) } ) 
C_  ( Base `  P
) )  ->  (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) )  =  (/)  <->  ( I  \  { ( 0g `  P ) } )  =  (/) ) )
8885, 86, 87sylancr 661 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) )  =  (/)  <->  ( I  \  { ( 0g `  P ) } )  =  (/) ) )
8988necon3bid 2640 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) )  =/=  (/)  <->  ( I  \  { ( 0g `  P ) } )  =/=  (/) ) )
9083, 89mpbird 232 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( deg1  `
 R ) "
( I  \  {
( 0g `  P
) } ) )  =/=  (/) )
91 infmssuzcl 11084 . . . . . . . 8  |-  ( ( ( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) )  C_  ( ZZ>= ` 
0 )  /\  (
( deg1  `
 R ) "
( I  \  {
( 0g `  P
) } ) )  =/=  (/) )  ->  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  )  e.  ( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) )
9271, 90, 91syl2anc 659 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  )  e.  ( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) )
9377, 92sseldd 3418 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  )  e. 
RR* )
94 xrltnle 9564 . . . . . 6  |-  ( ( ( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) )  e.  RR*  /\  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  e.  RR* )  ->  ( ( ( deg1  `  R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  <  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  )  <->  -.  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) ) ) )
9563, 93, 94syl2anc 659 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) )  <  sup ( ( ( deg1  `  R ) " (
I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <->  -.  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) ) ) )
9644, 95mpbid 210 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  -.  sup ( ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) ) ,  RR ,  `'  <  )  <_ 
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) ) )
9771adantr 463 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( ( deg1  `  R
) " ( I 
\  { ( 0g
`  P ) } ) )  C_  ( ZZ>=
`  0 ) )
9885a1i 11 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( deg1  `  R )  Fn  ( Base `  P
) )
9986adantr 463 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( I  \  { ( 0g `  P ) } ) 
C_  ( Base `  P
) )
10060adantr 463 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( X (rem1p `  R ) ( G `
 I ) )  e.  I )
101 simpr 459 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( X (rem1p `  R ) ( G `
 I ) )  =/=  ( 0g `  P ) )
102 eldifsn 4069 . . . . . . . . 9  |-  ( ( X (rem1p `  R ) ( G `  I ) )  e.  ( I 
\  { ( 0g
`  P ) } )  <->  ( ( X (rem1p `  R ) ( G `  I ) )  e.  I  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) ) )
103100, 101, 102sylanbrc 662 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( X (rem1p `  R ) ( G `
 I ) )  e.  ( I  \  { ( 0g `  P ) } ) )
104 fnfvima 6051 . . . . . . . 8  |-  ( ( ( deg1  `  R )  Fn  ( Base `  P
)  /\  ( I  \  { ( 0g `  P ) } ) 
C_  ( Base `  P
)  /\  ( X
(rem1p `
 R ) ( G `  I ) )  e.  ( I 
\  { ( 0g
`  P ) } ) )  ->  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  e.  ( ( deg1  `  R ) "
( I  \  {
( 0g `  P
) } ) ) )
10598, 99, 103, 104syl3anc 1226 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  ( ( deg1  `  R
) `  ( X
(rem1p `
 R ) ( G `  I ) ) )  e.  ( ( deg1  `  R ) "
( I  \  {
( 0g `  P
) } ) ) )
106 infmssuzle 11083 . . . . . . 7  |-  ( ( ( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) )  C_  ( ZZ>= ` 
0 )  /\  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) )  e.  ( ( deg1  `  R ) "
( I  \  {
( 0g `  P
) } ) ) )  ->  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) ) )
10797, 105, 106syl2anc 659 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  X  e.  I
)  /\  I  =/=  { ( 0g `  P
) } )  /\  ( X (rem1p `  R ) ( G `  I ) )  =/=  ( 0g
`  P ) )  ->  sup ( ( ( deg1  `  R ) " (
I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_ 
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) ) )
108107ex 432 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( X (rem1p `  R
) ( G `  I ) )  =/=  ( 0g `  P
)  ->  sup (
( ( deg1  `  R ) " ( I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_  (
( deg1  `
 R ) `  ( X (rem1p `  R ) ( G `  I ) ) ) ) )
109108necon1bd 2600 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( -.  sup ( ( ( deg1  `  R ) " (
I  \  { ( 0g `  P ) } ) ) ,  RR ,  `'  <  )  <_ 
( ( deg1  `  R ) `  ( X (rem1p `  R
) ( G `  I ) ) )  ->  ( X (rem1p `  R ) ( G `
 I ) )  =  ( 0g `  P ) ) )
11096, 109mpd 15 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( X (rem1p `  R ) ( G `  I ) )  =  ( 0g
`  P ) )
1112, 14, 6, 37, 15, 40dvdsr1p 22647 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  P
)  /\  ( G `  I )  e.  (Unic1p `  R ) )  -> 
( ( G `  I )  .||  X  <->  ( X
(rem1p `
 R ) ( G `  I ) )  =  ( 0g
`  P ) ) )
11226, 30, 39, 111syl3anc 1226 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  (
( G `  I
)  .||  X  <->  ( X
(rem1p `
 R ) ( G `  I ) )  =  ( 0g
`  P ) ) )
113110, 112mpbird 232 . 2  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  /\  I  =/=  { ( 0g `  P ) } )  ->  ( G `  I )  .|| 
X )
11424, 113pm2.61dane 2700 1  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  X  e.  I )  ->  ( G `  I )  .|| 
X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577    \ cdif 3386    C_ wss 3389   (/)c0 3711   {csn 3944   class class class wbr 4367   `'ccnv 4912   "cima 4916    Fn wfn 5491   -->wf 5492   ` cfv 5496  (class class class)co 6196   supcsup 7815   RRcr 9402   0cc0 9403   RR*cxr 9538    < clt 9539    <_ cle 9540   NN0cn0 10712   ZZcz 10781   ZZ>=cuz 11001   Basecbs 14634   .rcmulr 14703   0gc0g 14847   -gcsg 16172   Ringcrg 17311   ||rcdsr 17400   DivRingcdr 17509  LIdealclidl 17929  Poly1cpl1 18329   deg1 cdg1 22537  Monic1pcmn1 22611  Unic1pcuc1p 22612  quot1pcq1p 22613  rem1pcr1p 22614  idlGen1pcig1p 22615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-ofr 6440  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-tpos 6873  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-fz 11594  df-fzo 11718  df-seq 12011  df-hash 12308  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-0g 14849  df-gsum 14850  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-mhm 16083  df-submnd 16084  df-grp 16174  df-minusg 16175  df-sbg 16176  df-mulg 16177  df-subg 16315  df-ghm 16382  df-cntz 16472  df-cmn 16917  df-abl 16918  df-mgp 17255  df-ur 17267  df-ring 17313  df-cring 17314  df-oppr 17385  df-dvdsr 17403  df-unit 17404  df-invr 17434  df-drng 17511  df-subrg 17540  df-lmod 17627  df-lss 17692  df-sra 17931  df-rgmod 17932  df-lidl 17933  df-rlreg 18044  df-ascl 18076  df-psr 18118  df-mvr 18119  df-mpl 18120  df-opsr 18122  df-psr1 18332  df-vr1 18333  df-ply1 18334  df-coe1 18335  df-cnfld 18534  df-mdeg 22538  df-deg1 22539  df-mon1 22616  df-uc1p 22617  df-q1p 22618  df-r1p 22619  df-ig1p 22620
This theorem is referenced by:  ig1prsp  22663
  Copyright terms: Public domain W3C validator