![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifr0 | Structured version Visualization version Unicode version |
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ifr0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1855 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | vex 3048 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | ideq 4987 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 213 |
. . . 4
![]() ![]() ![]() ![]() |
5 | frirr 4811 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | ex 436 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | mt2i 122 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | eq0rdv 3769 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | fr0 4813 |
. . 3
![]() ![]() ![]() ![]() | |
10 | freq2 4805 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | mpbiri 237 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 11 | impbii 191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 ax-5 1758 ax-6 1805 ax-7 1851 ax-9 1896 ax-10 1915 ax-11 1920 ax-12 1933 ax-13 2091 ax-ext 2431 ax-sep 4525 ax-nul 4534 ax-pr 4639 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3an 987 df-tru 1447 df-ex 1664 df-nf 1668 df-sb 1798 df-eu 2303 df-mo 2304 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2581 df-ne 2624 df-ral 2742 df-rex 2743 df-rab 2746 df-v 3047 df-sbc 3268 df-dif 3407 df-un 3409 df-in 3411 df-ss 3418 df-nul 3732 df-if 3882 df-sn 3969 df-pr 3971 df-op 3975 df-br 4403 df-opab 4462 df-id 4749 df-fr 4793 df-xp 4840 df-rel 4841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |