MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Structured version   Unicode version

Theorem ifpr 4075
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr  |-  ( ( A  e.  C  /\  B  e.  D )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )

Proof of Theorem ifpr
StepHypRef Expression
1 elex 3122 . 2  |-  ( A  e.  C  ->  A  e.  _V )
2 elex 3122 . 2  |-  ( B  e.  D  ->  B  e.  _V )
3 ifcl 3981 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  _V )
4 ifeqor 3983 . . . 4  |-  ( if ( ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B )
5 elprg 4043 . . . 4  |-  ( if ( ph ,  A ,  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  { A ,  B }  <->  ( if (
ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B ) ) )
64, 5mpbiri 233 . . 3  |-  ( if ( ph ,  A ,  B )  e.  _V  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
73, 6syl 16 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
81, 2, 7syl2an 477 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   ifcif 3939   {cpr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-un 3481  df-if 3940  df-sn 4028  df-pr 4030
This theorem is referenced by:  suppr  7925  uvcvvcl  18585  indf  27669
  Copyright terms: Public domain W3C validator