Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpdfxor Structured version   Unicode version

Theorem ifpdfxor 36050
 Description: Define xor as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpdfxor if-

Proof of Theorem ifpdfxor
StepHypRef Expression
1 xor2 1407 . 2
2 ifpdfor 36027 . . 3 if-
3 ifpnot23 36041 . . . 4 if- if-
4 ifpdfan 36028 . . . 4 if-
53, 4xchnxbir 310 . . 3 if-
62, 5anbi12i 701 . 2 if- if-
7 ifpan23 36022 . . 3 if- if- if-
8 truan 1454 . . . 4
9 fal 1444 . . . . . 6
109biantru 507 . . . . 5
1110bicomi 205 . . . 4
12 ifpbi23 36035 . . . 4 if- if-
138, 11, 12mp2an 676 . . 3 if- if-
147, 13bitri 252 . 2 if- if- if-
151, 6, 143bitri 274 1 if-
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 187   wo 369   wa 370   wxo 1400  if-wif 1420   wtru 1438   wfal 1442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-xor 1401  df-ifp 1421  df-tru 1440  df-fal 1443 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator