Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbiidcor Structured version   Unicode version

Theorem ifpbiidcor 36088
Description: Restatement of biid 239. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpbiidcor  |- if- ( ph ,  ph ,  -.  ph )

Proof of Theorem ifpbiidcor
StepHypRef Expression
1 biid 239 . 2  |-  ( ph  <->  ph )
2 ifpdfbi 36087 . 2  |-  ( (
ph 
<-> 
ph )  <-> if- ( ph ,  ph ,  -.  ph )
)
31, 2mpbi 211 1  |- if- ( ph ,  ph ,  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187  if-wif 1420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ifp 1421  df-tru 1440
This theorem is referenced by:  ifpbiidcor2  36097
  Copyright terms: Public domain W3C validator