MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbi Structured version   Unicode version

Theorem ifbi 3921
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )

Proof of Theorem ifbi
StepHypRef Expression
1 dfbi3 888 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  /\  ps )  \/  ( -.  ph  /\  -.  ps ) ) )
2 iftrue 3908 . . . 4  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
3 iftrue 3908 . . . . 5  |-  ( ps 
->  if ( ps ,  A ,  B )  =  A )
43eqcomd 2462 . . . 4  |-  ( ps 
->  A  =  if ( ps ,  A ,  B ) )
52, 4sylan9eq 2515 . . 3  |-  ( (
ph  /\  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B )
)
6 iffalse 3910 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
7 iffalse 3910 . . . . 5  |-  ( -. 
ps  ->  if ( ps ,  A ,  B
)  =  B )
87eqcomd 2462 . . . 4  |-  ( -. 
ps  ->  B  =  if ( ps ,  A ,  B ) )
96, 8sylan9eq 2515 . . 3  |-  ( ( -.  ph  /\  -.  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B
) )
105, 9jaoi 379 . 2  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  -.  ps )
)  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
111, 10sylbi 195 1  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370   ifcif 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-if 3903
This theorem is referenced by:  ifbid  3922  ifbieq2i  3924  mulmarep1gsum1  18514  madugsum  18584  dchrhash  22746  lgsdi  22807  rpvmasum2  22897  itg2gt0cn  28615  gsummoncoe1  31016  mp2pm2mplem4  31316  bj-projval  32841  elimhyps  32970  dedths  32971
  Copyright terms: Public domain W3C validator