MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iexpcyc Structured version   Unicode version

Theorem iexpcyc 12175
Description: Taking  _i to the  K-th power is the same as using the  K  mod  4 -th power instead, by i4 12173. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )

Proof of Theorem iexpcyc
StepHypRef Expression
1 zre 10785 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  RR )
2 4re 10529 . . . . 5  |-  4  e.  RR
3 4pos 10548 . . . . 5  |-  0  <  4
42, 3elrpii 11142 . . . 4  |-  4  e.  RR+
5 modval 11898 . . . 4  |-  ( ( K  e.  RR  /\  4  e.  RR+ )  -> 
( K  mod  4
)  =  ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )
61, 4, 5sylancl 660 . . 3  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
76oveq2d 6212 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) ) )
8 4z 10815 . . . . 5  |-  4  e.  ZZ
9 4nn 10612 . . . . . . 7  |-  4  e.  NN
10 nndivre 10488 . . . . . . 7  |-  ( ( K  e.  RR  /\  4  e.  NN )  ->  ( K  /  4
)  e.  RR )
111, 9, 10sylancl 660 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  /  4 )  e.  RR )
1211flcld 11834 . . . . 5  |-  ( K  e.  ZZ  ->  ( |_ `  ( K  / 
4 ) )  e.  ZZ )
13 zmulcl 10829 . . . . 5  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )
148, 12, 13sylancr 661 . . . 4  |-  ( K  e.  ZZ  ->  (
4  x.  ( |_
`  ( K  / 
4 ) ) )  e.  ZZ )
15 ax-icn 9462 . . . . 5  |-  _i  e.  CC
16 ine0 9910 . . . . 5  |-  _i  =/=  0
17 expsub 12116 . . . . 5  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  /  4
) ) )  e.  ZZ ) )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
1815, 16, 17mpanl12 680 . . . 4  |-  ( ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
1914, 18mpdan 666 . . 3  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) ) )
20 expmulz 12115 . . . . . . . 8  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( 4  e.  ZZ  /\  ( |_
`  ( K  / 
4 ) )  e.  ZZ ) )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
2115, 16, 20mpanl12 680 . . . . . . 7  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
228, 12, 21sylancr 661 . . . . . 6  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  ( ( _i
^ 4 ) ^
( |_ `  ( K  /  4 ) ) ) )
23 i4 12173 . . . . . . . 8  |-  ( _i
^ 4 )  =  1
2423oveq1i 6206 . . . . . . 7  |-  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) )  =  ( 1 ^ ( |_ `  ( K  / 
4 ) ) )
25 1exp 12098 . . . . . . . 8  |-  ( ( |_ `  ( K  /  4 ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2612, 25syl 16 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2724, 26syl5eq 2435 . . . . . 6  |-  ( K  e.  ZZ  ->  (
( _i ^ 4 ) ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2822, 27eqtrd 2423 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  1 )
2928oveq2d 6212 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  1
) )
30 expclz 12094 . . . . . 6  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  K  e.  ZZ )  ->  (
_i ^ K )  e.  CC )
3115, 16, 30mp3an12 1312 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ K )  e.  CC )
3231div1d 10229 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  1 )  =  ( _i ^ K ) )
3329, 32eqtrd 2423 . . 3  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
3419, 33eqtrd 2423 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
357, 34eqtrd 2423 1  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404   _ici 9405    x. cmul 9408    - cmin 9718    / cdiv 10123   NNcn 10452   4c4 10504   ZZcz 10781   RR+crp 11139   |_cfl 11826    mod cmo 11896   ^cexp 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-sup 7816  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070
This theorem is referenced by:  iblitg  22260
  Copyright terms: Public domain W3C validator